期刊文献+

广义Baby TKK代数的Boson-fermion场下的不可约模

Irreducible Representation with Boson-fermionic State of the Extended Baby TKK Lie Algebra
下载PDF
导出
摘要 研究对应于欧式空间中最小(非格)半格S的babyTKK李代数g(T(S))的泛中心扩张广义baby TKK代数g(T(S))的一类boson-fermion场下的不可约表示,这里T(S)为半格S∈R^v(v=2)上的Jordan代数。 In this paper we study an irreducible representation with boson-fermionic states for the extended baby TKK algebra g(T) which is obtained from the Jordan algebra T(S) with the smallest possible (nonlattice) semilattice in the Euclidean space.
作者 李鸿萍
出处 《漳州师范学院学报(自然科学版)》 2012年第2期1-8,共8页 Journal of ZhangZhou Teachers College(Natural Science)
基金 华侨大学科研基金资助项目(10HZR24) 中央高校基本科研业务费专项资金资助
关键词 TKK代数 JORDAN代数 顶点算子表示 FOCK空间 TKK algebra Jordan algebra vertex operator representation Fock space
  • 相关文献

参考文献2

二级参考文献15

  • 1Billig, Y., Principal vertex operator representations for Toroidal Lie algebras [J], J.Math. Phys., 39(1998), 3844-3864.
  • 2Berman, S., Jurisich, E. & Tan, S., Beyond Borcherds Lie algebras and inside [J], Trans.Amer. Math. Soc., 353(2001), 1183-1219.
  • 3Berman, S. & Moody, R. V., Lie algebras graded by the finite root systems and the intersection matrix algebras of Slodowy [J], Invent. Math., 108(1992), 323-347.
  • 4Eswara Rao, S. & Moody, R. V., Vertex representations for n-Toroidal Lie algebras and a generalization of the Virasoro algebras [J], Commun. Math. Phys., 159(1994),239-264.
  • 5Frenkel, I. B. & Kac, V. G., Basic representations of affine Lie algebras and dual resonance modules [J], Invent. Math., 62(1980), 23-66.
  • 6Frenkel, I. B., Lepowsky, J. & Meurman, A., Vertex operator algebras and the monster[M], Academic Press, Boston, 1989.
  • 7Fabbri, M. & Moody, R. V., Irreducible representations of Virasoro-Toroidal Lie algebras[J], Commun. Math. Phys., 159(1994), 1-13.
  • 8Fabbri, M. & Okoh, F., Representations of Virasoro-Heisenberg algebras and VirasoroToroidal algebras [J], Canadian J. Math., 51(1999), 523-545.
  • 9Kac, V. G., Kazhdan, D. A., Lepowsky, J. & Wilson, R. L., Realization of the basic representations of the Euclidean Lie algebras [J], Adv. in Math., 42(1981), 83-112.
  • 10Kac, V. G. & Raina, A. K., Bombay lectures on highest weight representations of infinite dimensional Lie algebras [M], World Sci. Pub., 1987.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部