期刊文献+

基于数据挖掘的铜绿微囊藻试验模拟数据分析 被引量:1

Analysis of Microcystis aeruginosa Experimental Simulation Data Based on Data Mining
下载PDF
导出
摘要 运用数据挖掘方法,对文献中收集的铜绿微囊藻试验模拟数据进行深入分析。结果表明,数据挖掘方法中的主成分分析作为非参数的分类方法可以应用于识别变量的重要性。同时得到影响室内铜绿微囊藻生长的主要因素是初始pH(pH0)、接种藻密度(N0)和初始总磷浓度(TP0);适当减小藻类的N0、水体的pH0或TP0都可以抑制铜绿微囊藻的生长。说明数据挖掘方法能够对铜绿微囊藻试验模拟数据进行定性分析。 The data mining method was used to deeply analyze Microcystis aeruginosa experimental simulation data collected from literatures. The results demonstrated that principal component analysis, served as a non-parametric method of classification, could be used to identify the important variables. In addition, the primary factors which influenced the growth of Microcystis aeruginosa were initial pH ( pH0 ), algal density ( N0 ) and total phosphorus (TP0). The growth of Microcystis aeruginosa might be inhibited by reducing the value of N0, pH0 or TPo. This indicated that the data mining method could make qualitative analysis for experimental simulation data of Microcystis aeruginosa.
出处 《环境工程技术学报》 CAS 2012年第4期309-312,共4页 Journal of Environmental Engineering Technology
基金 国家水体污染控制与治理科技重大专项(2009ZX07106-001)
关键词 数据挖掘 试验模拟数据 富营养化 铜绿微囊藻 藻密度 data mining experimental simulation data eutrophication Microcystis aeruginosa algal density
  • 相关文献

参考文献18

  • 1XUE X,LANDIS A E. Eutrophication potential of food consumption patterns[J].Environmental Science and Technology,2010,(16):6450-6456.doi:10.1038/nrcardio.2010.52.
  • 2GRUNDY R D. Strategies for control of man-made eutrophication[J].Environmental Science and Technology,1971,(12):1184-1190.doi:10.1021/es60059a011.
  • 3LEE G F,RAST W,JONES R A. Water repot:eutxophication of water bodies:insights for an age old problem[J].Environmental Science and Technology,1978,(08):900-908.doi:10.1021/es60144a606.
  • 4LEE G F,JONES R A. Detergent phosphate bans and eutrophication[J].Environmental Science and Technology,1986,(04):330-331.doi:10.1021/es00146a003.
  • 5AHN C Y,PARK M H,JOUNG S H. Growth inhibition of eyanobacteria by ultrasonic radiation:laboratory and enclosure studies[J].Environmental Science and Technology,2003,(13):3031-3037.doi:10.1021/es034048z.
  • 6TEIXEIRA M R,ROSA M J. Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa:Pan Ⅰ.the key operating conditions[J].Separation and Purification Technology,2006,(01):84-94.doi:10.1016/j.seppur.2006.03.017.
  • 7TAKAARA T,SANO D,MASAGO Y. Surfacetained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment[J].Water Research,2010,(13):3781-3786.doi:10.1016/j.watres.2010.04.030.
  • 8SANGOLKAR L N,MASKE S S,CHAKRABARTI T. Methods for determining microcystins(peptide hepatotoxins)and microcystinproducing cyonobacteria[J].Water Research,2006,(19):3485-3496.doi:10.1016/j.watres.2006.08.010.
  • 9杨善升,陆文聪,陈念贻.数据挖掘技术在化工优化中的应用[J].江苏化工,2004,32(4):1-4. 被引量:7
  • 10HO H S,KRISHNAN R. Predicting repayment of the credit card debt[J].Computers1 & Operations Research,2012,(04):765-773.

二级参考文献61

  • 1杨善升,陆文聪,陈念贻.DMOS优化软件及其在化工过程优化中的应用[J].化工自动化及仪表,2005,32(4):36-39. 被引量:5
  • 2胡纪华 杨兆禧 等.胶体与界面化学[M].广州:华南理工大学出版社,1999..
  • 3SMIL V.Detonator of the Population Explosion[J].Nature,1999,400:415.
  • 4LISAL M,BENDOVA M,SMITH W R.Monte Carlo Adiabatic Simulation of Equilibrium Reacting Systems:The Ammonia Synthesis Reaction[J].Fluid Phase Equilibria,2005,235:50-57.
  • 5CHEN N Y,LU W C,CHEN R L,et al.Chemometric Methods Applied to Industrial Optimization and Materials Optimal Design[J].Chemometrics and Intelligent Laboratory Systems,1999,45:329-333.
  • 6WANG X Z,MCGREAVY C.Automatic Classification for Mining Process Operational Data[J].Industrial & Engineering Chemistry Research,1998,37:2215-2222.
  • 7Pankhurst CA and Pate BD. Trace elements in hair. Review of Analyrical Chemistry, 1979, 4 (2/3) : 112.
  • 8Christanini J and Taylor JS. An Introduction to Support Vector Machines and other Kernel - baaed Methods. Cambridge : Cambridge University Press, 2000.
  • 9Vapnik Vhutimir N. The Nature of Statistical Learning Theory. Berlin : Springer, 1995.
  • 10Platt JC. Fast training of support vector machines using sequential minimal optimization, Microsoft Research. http://soww.research.microsoft.com/-jplatt.

共引文献33

同被引文献22

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部