期刊文献+

和声模糊聚类在读者兴趣度建模中的应用 被引量:1

Applied of Harmony Fuzzy Clustering in Readers Interesting Degree Modeling
下载PDF
导出
摘要 本文采取了3种必要的措施提高了聚类质量:考虑到各维数据特征属性对聚类效果影响不同,采用了基于统计方法的维度加权的方法进行特征选择;对于和声搜索算法的调音概率进行了改进,将改进的和声搜索算法和模糊聚类相结合用于快速寻找最优的聚类中心;循环测试各种中心数情况下的聚类质量以获得最佳的类中心数。接着,该算法被应用于图书馆读者兴趣度建模中,用于识别图书馆日常运行时各读者借阅图书的类型,实验表明该算法较其它算法更优。这样的读者兴趣度聚类分析可以进行图书推荐,从而提高图书馆的运行效率。 Three methods are adopted to achieve a better clustering quality in the paper.Firstly,considering the different influences of each dimension attribute of data on the clustering effect,statistic method is used to weight each dimension to select feature.Secondly,some improvements are carried out for the probability of harmony search algorithm and combine fuzzy clustering algorithm with harmony search to rapidly find the optimal cluster centers.Thirdly,iterative method is used to test clustering quality to get the best number of cluster center.Next,the proposed algorithm is applied to reader interesting degree model to distinguish and identify interesting degree category of various readers during library running.Experimental results show that the proposed clustering algorithm outperforms other similar algorithms.This readers interesting model can recommend reasonable books to appropriate readers and the operating efficiency of the library can be improved.
作者 聂珍 王华秋
出处 《现代情报》 CSSCI 2012年第7期112-116,121,共6页 Journal of Modern Information
基金 教育部人文社会科学研究青年基金项目(No.10YJC870037)
关键词 和声搜索 模糊聚类 特征选择 读者兴趣度建模 harmony search fuzzy clustering feature selection reader interesting degree modeling
  • 相关文献

参考文献8

  • 1罗印升,李人厚,张维玺.一种基于克隆选择的聚类算法[J].控制与决策,2005,20(11):1261-1264. 被引量:7
  • 2徐晓华,陈崚.一种自适应的蚂蚁聚类算法[J].软件学报,2006,17(9):1884-1889. 被引量:55
  • 3李帅,王新军,高丹丹.基于内部空间特性的PSO聚类算法[J].计算机工程,2009,35(5):197-199. 被引量:6
  • 4GeemZW, KimJH, GV. Anewheurisficoptimizational- gonithm: hamony search [J]. Simtdation, 2001, 76 (2): 60- 68.
  • 5Osama Alia, Rajeswari Mandava, Mohd Ariz. A hybrid harmony search algorithm for MRI brain segmentation [ J]. Evolutionary Intelli- gence, 2011, (4): 31-49.
  • 6Forsati, R., Meybodi, M.R., Mahdavi, M., Neiat, A.G.. Hybridization of K- Means and Harmony Seauch Methods for Web Page Clustering [ C ]. Intemational Canference on Web Intelligence and In- telligent Agent Techndogy, 2008: 329- 335.
  • 7M.T.Ayvaz, S1multaneous &tenuinafion of aquifer parameters and zone structures.res with fuzzy c - means clustering arid meta- heuristic harmony search algithun [ J ]. Advancces (11): 2326-2338.
  • 8Law, M.H., Figueiredo, M.A., Jain, A.K. Simultaneous feature selection and clustering using mixture models. IEEE Trans. ON Pattern Analysis and Machine lntelliglmce, 2004, 26 (9): 1154-1166.

二级参考文献23

  • 1徐晓华,陈崚.一种自适应的蚂蚁聚类算法[J].软件学报,2006,17(9):1884-1889. 被引量:55
  • 2Last M, Klein Y, Kandel A. Knowledge Discovery in Time Series Databases[J]. IEEE Trans. on Systems Man and Cybernetics, 2001, 31(1): 160-169.
  • 3Kennedy J, Eberhart R C. Particle Swarm Optimization[C]//Proc. of IEEE International Conference on Neural Network. [S.l.]: IEEE Press, 1995: 1942-1948.
  • 4Blake C L. UCI Machine Learning Repository of Machine Learning Databases[EB/OL]. (1998-10-20). http://mlearn.ics.uci.edu/data bases/.
  • 5Selim S Z, Ismail U A. K-means-type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality[J]. IEEE Trans. on Pattern Anal. Machine Intell., 1984, 6(6): 81-87.
  • 6Laszlo O M, Mukherjee P S. A Genetic Algorithm that Exchanges Neighboring Centers for K-means Clustering[J]. Pattern Recognition Letters, 2007, 28(16): 2359-2366.
  • 7Han J W, Micheline Kamber. Data Mining: Concept and Techniques [M]. Vermont: Morgan Kaufmann Publishers, 2000.
  • 8Jain A K, Murty M N, Flynn P J. Data Clustering: A Review [J]. ACM Computing Surveys, 1999, 31 (3):264-323.
  • 9Ma S, Wang T J, Tang S W, et al. A New Fast Clustering Algorithm Based on Reference and Density[M]. Berlin: Springer-Verlag, 2003.
  • 10Shelokar P S, Jayaraman V K, Kulkarni B D. An Ant Colony Approach for Clustering[J]. Analytica Chimica Acta, 2004, 509(2): 187-195.

共引文献59

同被引文献5

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部