期刊文献+

基于递推遗传的模糊3-划分熵多阈值FISH基因提取 被引量:1

Fuzzy 3-partition entropy multilevel threshold approach based on recursive genetic algorithm for extracting FISH-labeled genes
下载PDF
导出
摘要 针对现有寻优算法存在的重复计算问题,提出了基于递推遗传的模糊3-划分熵多阈值荧光原位杂交(Fluorescencein Situ Hybridization,FISH)基因提取算法来提高用模糊划分熵算法提取多阈值FISH基因的效率。采用迭代验证法确定隶属度函数窗宽,并使用附加边界条件及灰度权重的隶属度函数对图像进行模糊3-划分。为了提高阈值寻优的效率,引入递推算法将模糊熵的计算转化为递推过程,并保存部分不重复的递推结果用于后续的计算,最后采用遗传算法寻优,使得种群个体的计算能使用预存结果快速搜索全局最优阈值。对提取结果与几种常用算法进行了直观比较,并对处理时间、分类概率等性能指标进行了量化分析。对多幅不同类型的仿真人工图像和真实FISH图像的测试表明,处理时间仅为常用算法的1%,错误划分概率小于6.00×10-2。提出的算法可以准确,高效地提取FISH基因目标。 A new fuzzy 3-partition entropy approach based on a fast recursive genetic algorithm was proposed to reduce the repeated computations and to improve the processing efficiency in extraction of FISH-labelled (Fluorescence In Situ Hybridization) genes. An iteration validation method was presented to determine the window width of the membership functions and the membership functions considering the boundary conditions and gray weights were selected to perform the fuzzy 3-partition. To improve the efficiency of selecting optimal thresholds, a reeursive algorithm was presented to convert the computation of fuzzy entropy to a recursive process. Then, the no-repetitive results of the processing moments were stored for the succeeding genetic algorithm to compute the fitness of each individual. Finally, the optimal thresholds were searched by the genetic algorithm in a high speed. The result of the proposed algorithm was compared to those of the several common algorithms and the classification probability and run time were analyzed as the test criterion of optimal thresholds. By evaluating vari ous types of simulated images and real FISH images, it shows that the run time of the proposed algo rithm is 1 % that of other common algorithms and the misclassification error is less than 6.00 × 10^-2. These results demonstrate that the proposed algorithm is effective for improving the precision and efficiency of extracting FISH-labelled genes.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2012年第7期1475-1484,共10页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.50978030) 长安大学高校助研资助项目(No.CHD2010ZY003) 新世纪优秀人才计划资助项目(No.NCET-05-0849) 宁夏大学科学研究基金资助项目(No.ZR1122)
关键词 FISH图像 图像分割 模糊划分熵 递推算法 遗传算法 FISH image image segmentation fuzzy partition entropy recursive algorithm geneticalgorithm
  • 相关文献

参考文献18

  • 1TANKE H J. Studies of the human genome fluores- cent in situ hybridization and image analysis[J]. Biology of Cell, 1991, 93(2) : 33-41.
  • 2POLETTI E, ZAPPELLI F, RUGGERI A, etal.. A review of thresholding strategies applied to hu- man chromosome segmentation [ J ]. Computer Methods and Programs in Biomedicine, 2012, 6 (2) : 121-132.
  • 3TAO W B, TIAN J W, JIAN L. Image segmenta- tion by three-level thresholding based on maximumfuzzy entropy and genetic algorithm[J].Pattern Recognition Letters, 2003, 24 (16) : 3069-3078.
  • 4TAO W B, JIN H, LIU L M. Object segmentation using ant colony optimization algorithm and fuzzy entropy[J]. Pattern Recognition Letters, 2007, 28 (7): 788 796.
  • 5NANDITA S, AMITAVA C, SUGATA M. An a- daptive bacterial foraging algorithm for fuzzy entro- py based image segmentation [J]. Expert Systems with Applications, 2011, 38(12) : 15489-15498.
  • 6MACHAI J A T, COSTA A C, QUELHAS M D. Shannon, Rnyie and Tsallis entropy analysis of DNAusing phase plane [J]. Nonlinear Analysis: Real World Applications, 2011, 12(6) : 3135-3144.
  • 7MEHDI S, HASSAN S, ARIAA. Minimum entro- py control of chaos via online particle swarm optimi- zation method[J]. Applied Mathematical Model- ling, 2011, 21(10): 171-195.
  • 8TANGYG, DIQY, GUANXP, etal.. Thresh- old selection based on fuzzy Tsallis entropy and par- ticle swarm optimization [J]. Neuro Quantology, 2008, 6(4): 412-419.
  • 9MACHADO J A T, COSTA A C, QUELHAS M D. Analysis and visualization of chromosome infor- mation[J]. Gene, 2011, 49(1): 81-87.
  • 10HORNG M H. Multilevel thresholding selection based on the artificial bee colony algorithm for im- age segmentation[J]. Expert Systems with Ap- plications, 2011, 38(11) : 13785-13791.

二级参考文献19

  • 1张少军,苟中魁,李庆利,李忠富,金剑.利用数字图像处理技术测量直齿圆柱齿轮几何尺寸[J].光学精密工程,2004,12(6):619-625. 被引量:50
  • 2王朝晖,李莉,李引生,蒋庄德.基于遗传算法的生物组织图像最佳挖取点寻优[J].光学精密工程,2005,13(2):231-236. 被引量:14
  • 3李立源,龚坚,陈维南.基于二维灰度直方图最佳一维投影的图像分割方法[J].自动化学报,1996,22(3):315-322. 被引量:49
  • 4罗锡文,周学成,严小龙.植物根系三维构型原位观测技术的研究进展[A].见:农业工程科技创新与建设现代农业-中国农业工程学会2005学术年会论文集[C],广州:华南农业大学,2005:421-425.
  • 5章敏晋.图像分割[M].北京:北京科学出版社,2001.
  • 6Cheng H D, Chen Y H, Sun Y. A novel fuzzy entropy approach to image enhancement and thresholding [ J]. Signal Processing, 1999, 75(3) :277-301.
  • 7Zhao Maa-suo, Alan M N Fu, Yan Hong. A technique of three-level thresholding based on probability partition and fuzzy 3-partition [ J]. IEEE Transactions on Fuzzy Systems, 2001, 9 (3) : 469-479.
  • 8Zhou Xue-cheng, Luo Xi-wen, Yan Xiao-long. Research on segmenting algorithm for MSCT images of plant root system based on its morphological feature [ A ]. In: Proceedings of ASAE ( American Society of Agricultural Engineers )/CSAE (Canadian Society of Agricultural Engineers) Annual International Meeting[ C], Ottawa, Canada, 2004: 4141-4148.
  • 9Murphy C A, Pal S K. Fuzzy thresholding: mathematical framework, bound functions and weighted moving average technique [J]. Pattern Recognition Letter, 1990, 11(2) :197-206.
  • 10玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..

共引文献34

同被引文献15

  • 1朱炜,徐玉如,万磊,吕春旺.基于二维直方图和粒子群优化的边缘检测[J].系统工程与电子技术,2007,29(7):1192-1196. 被引量:7
  • 2郑强,董恩清.窄带主动轮廓模型及在医学和纹理图像局部分割中的应用[J].自动化报,2013.39(I):21-30.
  • 3Fattah S A. Khan M R. Sharin A. et al. A face recognition scheme based on spectral domain cross-correlation function[OLJ.[2013-01-16J. http://ieeexplore. ieee. org/stamp/ stamp.Jspvrp= &.arnumber= 6129053.
  • 4Hao Y. Qiu S W. Hai W Y. An improved image segmentation algorithm and measurement methods for asphalt mixtures[C] / /Proceedings of the 5th IEEE International Conference on Cybernetics and Intelligent Systems. Los Alamitos: IEEE Computer Society Press. 2011: 36-41.
  • 5Portes de Albuquerque M. Esquef I A. Gesualdi Mello A R. et al. Image thresholding using Tsallis entropy[J]. Pattern Recognition Letters. 2004. 25(9): 1059-1065.
  • 6J urio A. Pagola M. Bustince H. Ignorance - based fuzzy clustering algorithm[J]. InternationalJournal of Computational Intelligence and Applications. 2010. 9 (3): 225-239.
  • 7Sahoo P K. Arora G. Image thresholding using two?dimensional Tsallis-Havrda-Charvdt entropy[J]. Pattern Recognition Letters. 2006. 27(6): 520-528.
  • 8吕洁,熊春荣.交互式医学图像分割算法[J].计算机仿真,2010,27(12):262-266. 被引量:8
  • 9李盼池,宋考平,杨二龙.基于受控旋转门的量子神经网络模型算法及应用[J].控制与决策,2011,26(6):898-901. 被引量:12
  • 10李志农,蒋静,冯辅周,袁振伟.基于量子粒子群优化Volterra时域核辨识的隐Markov模型识别方法[J].仪器仪表学报,2011,32(12):2693-2698. 被引量:12

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部