期刊文献+

Sr3SiO5降温过程分解及对制备Sr3SiO5∶Eu^2+的影响 被引量:1

Influences of Sr_3SiO_5 Decompose on the Cooling Process on the Preparation of Sr_3SiO_5∶Eu^(2+)
下载PDF
导出
摘要 采用高温固相反应法制备Sr3SiO5∶Eu2+时,往往有Sr2SiO4∶Eu2+共存,从而影响Sr3SiO5∶Eu2+的发光性能。本文采用DSC/TG、淬冷法结合XRD,研究了Sr3SiO5∶Eu2+在降温过程中的分解反应。结果表明,Sr3SiO5是在1 250℃以上稳定存在的化合物,在降温过程中Sr3SiO5在1 250℃分解为Sr2SiO4和SrO。采用快速降温的方法可以抑制Sr3SiO5的分解。当降温速率小于10℃.min-1时,Sr3SiO5全部分解为Sr2SiO4和SrO;当降温速率为15℃.min-1时,样品主要物相为Sr3SiO5,但有少部分Sr3SiO5发生分解,当降温速率增大到20℃.min-1时,Sr3SiO5分解的量更少,即随着降温速率增大,Sr3SiO5分解的量减小,从而获得几近纯相的Sr3SiO5∶Eu2+荧光粉。 When Sr3SiO5∶Eu^2+ was prepared by high temperature solid state method,Sr2SiO4∶Eu2+ phase often coexists and affects the luminescent properties of Sr3SiO5∶Eu2+.In the cooling process,the decompose reaction of Sr3SiO5∶Eu^2+ were studied by DSC/TG,quenching method and XRD.Results indicate that the Sr3SiO5∶Eu^2+ phase is a stable structure above 1 250 ℃.In the cooling process,the Sr3SiO5∶Eu^2+ phosphor will be decomposed down into Sr2SiO4 and SrO at 1 250 ℃,and the decomposition of Sr3SiO5∶Eu^2+ phosphor can be restrained by rapid cooling method.When the cooling rate less than 10 ℃·min^-1,all Sr3SiO5∶Eu2+ decompose into Sr2SiO4 and SrO.When the cooling rate for 15 ℃·min^-1,the main object of samples is Sr3SiO5∶Eu^2+,but there are still a few Sr3SiO5∶Eu2+ decomposition.When the cooling rate is more than 20 ℃·min^-1,decomposition of Sr3SiO5∶Eu2+ phase is less.Sr3SiO5∶Eu^2+ decomposition reduced with increases of the cooling rate,and the pure Sr3SiO5∶Eu2+ phosphor can be obtained.
机构地区 长春理工大学
出处 《无机化学学报》 SCIE CAS CSCD 北大核心 2012年第8期1570-1574,共5页 Chinese Journal of Inorganic Chemistry
基金 吉林省科技厅项目(No.20090348,20080511,201201117) 吉林省发改委课题(No.2011FGW03)资助项目
关键词 Sr3SiO5∶Eu2+ 降温分解 淬冷法 降温速率 Sr3SiO5∶Eu^2+; cooling decomposition; quenching method; cooling rate;
  • 相关文献

参考文献26

  • 1Bednarkiewicz A, Wawrzynczyk D, Nyk M, et al. J. Rare Earths, 2006,19:1152-1156.
  • 2SU Qiang, WU Hao, PAN Yue-Xiao, et al. Chin. J. Rare Earth Soc. (Zhongguo Xitu Xuebao), 2005,23(5):513-517.
  • 3Eisert D, Strauss U, Bader S, et al. IPAP Conf. Series 1, 2000,1:841-844.
  • 4LIU Jie SUN Jia-Yue SHI Chun-Sha. Chem. Bull.(Huaxue Tongbao), 2005,68(6):417-424.
  • 5JIN Huai-Dong, XIANG Wei-Dong, HUANG Hai-Yu, et al. Chinese J, lnorg. Chem.(Wuji Huaxue Xuebao), 2011,27(7):1285-1290.
  • 6LUO Xi-Xian, CAO Wang-He, SUN Fei. Chin. Sci. Bull.(Kexue Tongbao), 2008,53(9):1010-1016.
  • 7LI Xue-Ming, TAO Chuan-Yi, KONG Ling- Feng, et al. Chinese J. lnorg. Chem.(Wuji Huaxue Xuebao), 2007(8):1409-1414.
  • 8LI Shao-Xia, LI Da-Ji, WANG Ya-Ping, et al. Mater. Rev.(Cailiao Daobao), 2008,22(4):18-25.
  • 9Abdullah M, Okuyama K, Wuled Lenggoro I, et al. J. Non-Cryst. Solids, 2005,351:697-704.
  • 10Yum J, Kim S, Sung Y. Colloid. Su A, 2004,251(1/2/3): 203-207.

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部