期刊文献+

应用层负载特征定义及自动提取方法 被引量:2

A New Format of Packet Signature and Its Automatic Generation Method
原文传递
导出
摘要 针对现有网络流量识别中应用层负载特征提取方法对训练数据中字节值变化较为敏感的问题,首先定义了一种新的以位为最小特征单位的网络流量应用层负载特征,然后设计了相应的自动提取方法。通过3种常用标准协议的实验表明,自动提取方法可以快速获得负载特征,特征识别结果准确性高。对QQ私有应用协议的实验表明,使用获取到的负载特征进行网络流量识别,可以满足实际网络中对QQ网络流量识别的要求。 For the fair sensitivity of the existing application-layer payload signature generation methods to the change of byte value of training data, in network traffic identification, a new format of packet signature with bit as its basic signature unit is defined, and the corresponding automatic generation method thus designed. The experiments with three Internet standard protocols show that this method could effectively generate payload signatures, and these signatures are more accurate. Then the experiment with private protocol QQas an example indicates that the application of generated signature in the actual network could effectively meet the traffic identification requirement of QQ network.
出处 《通信技术》 2012年第7期20-23,共4页 Communications Technology
基金 高等学校博士学科点专项科研基金新教师类资助课题(No.20113402120026) 安徽省自然科学基金(No.1208085QF112) 安徽省高等学校优秀青年人才基金(No.2012SQRL001ZD) 中央高校基本科研业务费专项资金资助(No.WK0110000007)
关键词 应用层负载特征 网络流量识别 特征提取 识别率 application-layer payload signatures network traffic identification signaturegeneration' identification rate
  • 相关文献

参考文献9

  • 1辛静,徐家品.一种网络化的业务识别系统[J].通信技术,2010,43(7):220-222. 被引量:2
  • 2汤昊,李之棠.基于DPI的P2P流量控制系统的设计与实现[J].信息安全与通信保密,2007,29(6):94-96. 被引量:12
  • 3Subhabrata S, SPATSCHECK O, WANG Dongmei. Accurate, Scalable in-network Identification of P2P Traffic Using Application Signatures[C].USA: [s.n.],2004: 512-521.
  • 4SVEN E, SANDRINT P. Analysis and Signature of Skype VolP Session Traffic[R]. Berlin: [s.n.],2006.
  • 5HAFFNER P, SEN S, SPATSCHECK O, et al. ACAS: Automated Construction of Application Signatures[C]. USA:ACM, 2005:197-202.
  • 6PARK Byung-Chul, WON Young J, RIM Myung-Sup, et al. Towards Automated Application Signature Generation for Traffic Identification[C].USA: IEEE, 2008:160-167.
  • 7刘兴彬,杨建华,谢高岗,胡玥.基于Apriori算法的流量识别特征自动提取方法[J].通信学报,2008,29(12):51-59. 被引量:39
  • 8ACETO G, DAINOTTI A, Taking the best of Classification[C].USA DONATO W, el al. PortLoad: Two Worlds in Traffic :IEEE, 2010:51-59.
  • 9鲁刚,张宏莉,叶麟.P2P流量识别[J].软件学报,2011,22(6):1281-1298. 被引量:48

二级参考文献38

共引文献94

同被引文献13

  • 1谢建全.入侵检测中一种快速串匹配算法[J].信息安全与通信保密,2006(10):130-132. 被引量:1
  • 2AGRAWAL R, IMIELINSKI T, SWAMI A. Mining Association Rules between Sets of Items in Large Database[C]// SIGMOD'93. Washington: [s.n.], 1993: 207-216.
  • 3AGRAWAL R, SRIKANT R. Fast Algorithm for Mining Association Rules[C]//JARKE M, ZANIOLO C, eds. th I Proceedings of 20 Int 1 Conf on Very Large Data Base. [s.1.] Morgan Kaufmann Press, 1994: 487-499.
  • 4PARK J S, CHEN M S, YU P S. An Effective Hash Based Algorithm for Mining Association Rules[C]//CAREY M, SCHNEIDER D, eds. Proceedings of ACM SIGMOD International Conference on Management of Data. San Jose, California: [s.n.], 1995: 175-186.
  • 5DAINOTTI A, PESCAPE A, CLAFFY C K. Issues and Future Directions in Traffic Classification[J]. Network, IEEE , 2012,26(01):35-40.
  • 6AMITABH S, ALAN E. ATOM: a System for Building Customized Program Analysis Tools[C]// Proceedings of the ACM SIGPLAN 1994 conference on Programming language design and implementation. ACM Press:New York, 1994:196-205.
  • 7LUK C K, COHN R, MUTH R, et al. Pin: Building Customized Program Analysis Tools with Dynamic Instrumentation[C]//Proc. Of the 2005 ACM Conference on Programming Language Design and Implementation(PLDl ' 05). New York, NY, USA: ACM, 2005:190-200.
  • 8The Daikon Invariant Detector[EB/OL].Program Analysis Group of MIT[2012-10-31]. http://groups. csail, mit. edu/pag/daikon/.
  • 9周江,贾茂林,朱修阳,贺德银,秦仲学.P2P应用识别的研究[J].信息安全与通信保密,2009,31(9):96-97. 被引量:3
  • 10王伟,张利刚,吕彬.基于主动识别技术的网关P2P流量检测[J].信息安全与通信保密,2009,31(12):91-92. 被引量:3

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部