期刊文献+

Banach空间中二阶脉冲微分方程边值问题极解的存在性 被引量:1

Existence of Extremal Solutions to Boundary Value Problems of Impulsive Differential Equations in Banach Spaces
下载PDF
导出
摘要 采用上下解方法和单调迭代技巧研究Banach空间中二阶脉冲微分方程边值问题,并建立其极大解和极小解的存在性定理. A monotone iterative technique in the presence of lower and upper solutions is used to discuss the existence to the boundary value problems of impulsive differential equations in a Banach space. Under wide monotone conditions and the noncompactness measure condition of nonlinearity and impulsive function, we obtain the existence of extreme solutions between lower and upper solutions.
作者 范虹霞
出处 《兰州交通大学学报》 CAS 2012年第3期154-157,共4页 Journal of Lanzhou Jiaotong University
关键词 脉冲微分方程 边值问题 上下解 非紧性测度 impulsive differential equation boundary value problem cone lower and upper solution measure of noncompactness
  • 相关文献

参考文献13

  • 1Lakshrnikantham V, Bainov D, Simeonov P. Theory of impulsive differential equations [- M ]. Singappore: World Scientific, 1989.
  • 2Samoilenko A M, Perestyuk N A. Impulsive differential equations[M]. Singappore: World Scientific, 1995.
  • 3Agarwa R P, O'regan D. Multiple nonnegetive solu- tions for second order impulsive differential equations [J]. Applied Math. Comput., 2000,114 : 51-59.
  • 4Lee E K,Lee Y H. Multiple positive solutions of singu- lar two--point boundary value problems for second or- der impulsive differential equation[J]. Applied Math. Comput. ,2004,158: 745-759.
  • 5Benchohra M, Ntouyas S K, Ouahab A. Extremal solu- tions of second order impulsive dynamic equations on time scales[J]. J. Math. Anal. Appl. 2006, 324: 425- 434.
  • 6Guo Dajun. A claas of second-order impulsive integro-- differential equations on unbounded domain in a Banach spaee[J]. Applied Math. Comput. , 2002,125 : 59-77.
  • 7Tian Yu, Jiang Daqing, Ge Weigao. Multiple positive solutions of periodic boundary value problems Ior sec- ond order impulsive diI/erential equations[J]. Applied Math. Comput. , 2008,200 : 123-132.
  • 8Li Yongxiang, Liu Zhe. Monotone iterative technique for addressing impulsive integro-differential equations in Banach spaces[J]. Nonlinear Anal. , 2007, 66: 83- 92.
  • 9Zhang Xuemei, Ge Weigao. Impulsive boundary value problems involving the one-dimensional p-Laplacian[J] Nonlinear Anal. , 2009,70 : 1692-1701.
  • 10Feng Meiqiang, Xie Dongxiu. Multiple positive solu- tions of multi--point boundary value problem for sec- ond-order impulsive differential equations[J]. J. Corn- put. Appl. Math., 2009,223 : 438-448.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部