摘要
采用上下解方法和单调迭代技巧研究Banach空间中二阶脉冲微分方程边值问题,并建立其极大解和极小解的存在性定理.
A monotone iterative technique in the presence of lower and upper solutions is used to discuss the existence to the boundary value problems of impulsive differential equations in a Banach space. Under wide monotone conditions and the noncompactness measure condition of nonlinearity and impulsive function, we obtain the existence of extreme solutions between lower and upper solutions.
出处
《兰州交通大学学报》
CAS
2012年第3期154-157,共4页
Journal of Lanzhou Jiaotong University
关键词
脉冲微分方程
边值问题
锥
上下解
非紧性测度
impulsive differential equation
boundary value problem
cone
lower and upper solution
measure of noncompactness