期刊文献+

Au核壳纳米催化剂的制备及性能研究 被引量:4

Preparation of Au Core-shell Nano-catalyst and Its Catalytic Performance
下载PDF
导出
摘要 采用化学镀工艺,制备了催化性能优良的Au核壳结构纳米催化剂,表面Au颗粒粒径约为16nm,结构致密,单分散程度较高。利用扫描电子显微镜(SEM)和紫外-可见分光光度计(UV-Vis),结合产H2量测试,研究了络合剂和还原剂的加入顺序对Au核壳结构纳米催化剂催化性能的影响。结果表明:先加络合剂所制备样品在亚甲基蓝脱色反应中表现出最高的反应速率和产氢量,具有最高的催化反应活性。较高的纳米Au颗粒粗糙度和Au负载量是其取得优良催化活性的原因。 Au core - shell nano - catalyst with excellent catalytic performance was prepared by electroless plating technology, and the diameter of Au particles on the surface was around 16 nm with a narrow distri- bution. The influence of adding order of complexing agent and reducing agent on the catalytic performance was investigated by SEM, UV -Vis spectrometer, and guantity of H2 production in the progress of the cat- alytic reaction. It was found that the sample prepared with the order of adding complexing agent first showed the highest reaction rates, H2 production, and catalytic activity. The higher loading and surface roughness of Au nanoparticles were responsible for the excellent catalytic performance of the Au core - shell nano - catalyst.
出处 《贵金属》 CAS CSCD 北大核心 2012年第2期1-5,共5页 Precious Metals
基金 北京航空材料研究院创新基金项目(KF53090315)
关键词 物理化学 AU 核壳结构 纳米粒子 催化反应 催化性能 physical chemistry Au core - shell structure nanopaticles catalytic reaction catalytic performance
  • 相关文献

参考文献11

  • 1Prodan E, Radloff C, Halas N J, et al. A hybridization model for the plasmon response of complex nanostructures [J]. Science, 2003, 302 (5644) : 419 -422.
  • 2Park H Y, Schadt M J, Wang L, et al. Fabrication of magnetic core@ shell Fe oxide@ Au nanoparticles for interfacial bioactivity and bio - separation [ J ]. Langmuir, 2007, 23 (17) : 9050 -9056.
  • 3杨晓峰,董相廷,周艳慧,王进贤,刘桂霞.贵金属核壳纳米粒子最新研究进展[J].稀有金属材料与工程,2009,38(2):368-372. 被引量:13
  • 4李国超,简弃非,孙绍云.质子交换膜燃料电池在军事中的应用前景[J].兵工学报,2007,28(4):487-490. 被引量:14
  • 5Thungprasert S, Sarakonsri T, Klysubun W, et al. Preparation of Pt - based ternary catalyst as cathode material for proton exchange membrane fuel cell by solution route method [J]. Journal of Alloys and Compounds, 2011, 509 (24) : 6812 -6815.
  • 6刘宾,廖世军,梁振兴.核壳结构:燃料电池中实现低铂电催化剂的最佳途径[J].化学进展,2011,23(5):852-859. 被引量:18
  • 7Xue J, Wang C, Ma Z. A facile method to prepare a series of SiO2@ Au core/shell structured nanoparticles [ J ]. Materials Chemistry and Physics, 2007, 105 (2/3) : 419 -425.
  • 8Mohamed R M. Characterization and catalytic properties of nano - sized Pt metal catalyst on TiO2 - SiO2 synthesized by photo-assisted deposition and impregnation methods [ J ]. Journal of Materials Processing Technology, 2009, 209 ( 1 ) : 577 - 583.
  • 9Xia H, Cui B, Zhou J, et al. Synthesis and characterization of Fe3O4 @ C @ Ag nanocomposites and their antibacterial performance [J]. Applied Surface Science, 2011, 257 (22) : 9397 - 9402.
  • 10Mller M, Hermes S, Khler K, et al. Loading of MOF - 5 with Cu and ZnO nanoparticles by gas - phase infiltration with organometallic precursors: properties of Cu/ZnO @ MOF -5 as catalyst for methanol synthesis [ J]. Chemistry of Materials, 2008, 20(14) : 4576 -4587.

二级参考文献113

  • 1周未,王金全,仲未秧.PEM燃料电池的应用前景[J].电池工业,2004,9(4):208-212. 被引量:6
  • 2Jin Zhang, Michael Post, Teodor Veres et al. dPhys Chem B[J], 2006, 110(14): 7122
  • 3Chil Seong Ah, Seol Ji Kim, Du-Jeon Jang. J Phys Chem B[J], 2006, 110(11): 5486
  • 4Oleg G Tovmachenko et al. Adv Mater[J], 2006, 18:91
  • 5Isabel Pastoriza-Santos, Jorge Prez-Juste, Susana Carregal- Romero et al. Chem Asian J[J], 2006(1): 730
  • 6Kazuhiko Maeda, Kentaro Teramura, Daling Lu et al. Angew Chem Int Ed[J], 2006, 45:1
  • 7Jianhuang Zeng, Jun Yang, Jim Yang Lee et al. J Phys Chem B[J], 2006, 110(48): 24 606
  • 8Dianping Tang, Ruo Yuan, Yaqin Chai. Biotechnology and Bioengineering[J], 2006, 94(5): 996
  • 9Dianping Tang, Ruo Yuan, Yaqin Chai. J Phys Chem B[J], 2006, 110(24): 11 640
  • 10Hye-Young Park, Mark J Schadt, Lingyan Wang et al. Langmuir[J], 2007, 23(17): 9050

共引文献40

同被引文献65

  • 1张爱敏,宁平,赵云昆,贺小昆,黄荣光.贵金属在载体上的分布对催化剂性能的影响[J].稀有金属材料与工程,2007,36(3):394-397. 被引量:13
  • 2陈景,张永俐,刘伟平.中国科学技术前沿[M].北京:高等教育出版社,2001:245-285.
  • 3徐如人,庞文琴等.分子筛与多孔材料化学[M].北京:科学出版社,2002.
  • 4Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related proper- ties, and applications toward biology, catalysis, and nanotechnology[J]. Chem Rev, 2004, 104(1): 293-346.
  • 5Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications[J]. Angewandte Chemie International Edition, 2004, 43(45): 6042-6108.
  • 6Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energy conversion and storage devices[J]. Advanced Materials, 2008, 20 (15): 2878-2887.
  • 7Fujihara H, Nakai H. Fullerenethiolate-functionalized gold nanoparticles: A new class of surface-confined metal-C60 nanocomposites[J]. Langmuir, 2001, 17(21): 6393-6395.
  • 8Xu W, Liu W, Zhang D, et al. Synthesis, characterization and chemical oxidation of 5-(N-pyrrolyl)pentanethiol protected gold nanoparticles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 204 (1/3): 201-209.
  • 9Li J F, Huang Y F, Ding Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy[J]. Nature, 2010, 464(7287): 392-395.
  • 10Yonezawa T, Kunitake T. Practical preparation of anionic mercapto ligand-stabilized gold nanoparticles and their immobilization[J]. Colloids and Surfaces A: Physicoche- mical and Engineering Aspects, 1999, 149(1): 193-199.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部