期刊文献+

VLSI集成电路版图点到点三维电阻计算

VLSI IC Layout Point to Point 3D Resistance Extraction
下载PDF
导出
摘要 在超大规模集成电路(VLSI)电路设计中,两点之间的等效电阻是设计人员所要考虑的重要参数。随着深亚微米工艺的广泛应用,版图形体日趋复杂,现有版图电阻提取工具的计算方法已难满足精度要求。本文提出了对于不同种类的三维复杂形体,其电阻网络采用不同的提取方法。对于简单形体采用解析法,对于复杂形体通过三维边界元计算方法提取版图电阻。基于提取的电阻网络,通过求解电路方程计算两点之间的等效电阻。实验表明,此方法对于实际电路设计中任意两点等效电阻计算,相比较于现有工具的方法具有计算速度快,计算精度高,计算效果好等特点。 In VLSI IC design, how to get the equivalent resistance between any two points in layout is important in order to keep the correct IC circuit function and performance. With widely usage of deep submiero process technology, the layout geometries become more complex so that traditional resistance estimation method can no longer provide sufficient accuracy. This paper presents method for the point to point resistance computation for differed geometry type. It uses analytical and integration method for manhattan geometry to extract the resistance network. The equivalent resistance then can be obtained by solving the circuit equation. For the complex geometry, it uses Boundary Element Method ( BEM ) to solve the 3D Laplace equation for getting the equivalent resistance. For the real layout data, the result shows that compared with existed methods the proposed method is much faster, more accurate and better performance.
出处 《中国集成电路》 2012年第7期38-44,共7页 China lntegrated Circuit
关键词 VLSI 集成电路 电阻计算 VLSI IC Resistance Extraction
  • 相关文献

参考文献6

  • 1Brown A S. Fast fihns. IEEE Spectrum , 2003, 40 ( 2 ) :p36-40.
  • 2Gleg H M , D rake J M. Calculation of muhiter- minalresistanee in integrated circuits [J]. IEEE Trans on Circuitsand System, 1986, 33 ( 4 ) : p462-465.
  • 3Mitsuhashi T, Yoshida K. A resistance calculation algorithmand its application to circuit extraction [J ]. IEEE Trans onComputerAided Design of Integrated Circuits and Systems,1987, 6 ( 3 ) : 337-345.
  • 4WANG Zeyi, WU Q A twodimensional resist- ancesimulator using the boundary element method [J]. IEEETrans on ComputerAided Design of Integrated Circuits andSystems, 1992, 11 ( 4 ) : 497-504.
  • 5蔡大用.高等数值分析[M].清华大学应用数学系,1995..
  • 6K. Guru Prasad, J. H. Kane, D. E. Keyes and C. Balakrishna, "Preconditioned Krylov Solvers for BEA," International Journal for Numerical Methods in Engin- eering, Vol. 37, pp 1651-1672, 1994.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部