期刊文献+

多参数控制的全频数字积分器及其稳定性设计

Full spectrum band integrator with multi-parameter and stable integrator design
原文传递
导出
摘要 基于数值积分器的线性组合构造一类新的多参数控制数字积分器,从绝对幅度误差、绝对幅度误差面积和绝对幅度误差能量方面提出了全频数字积分器控制参数的选取原则,选取适当的参数得到了幅频误差很小的全频数字积分器,并与已有比较精准的数字积分器进行了比较,分析了各数字积分器的幅频误差,证明了该新积分器具有良好的逼近精确性。对该积分器进行稳定性分析,转化为s的式子并进行最小相位处理,对全频数字积分器做了稳定性处理,得到了稳定的全频数字积分器。 A class of integrators with muhi-parameter is introduced. The class of integrators is based on the linear combina- tion of the numerical integrators. The parameter roles selected to get the optimal integrators are presented. Based on the roles, a new integrator is introduced, and this one can accurately approximate the ideal integrator over the entire Nyquist frequency range. In comparison with existing digital integrators, the new integrator has minimum absolute magnitude error. Then a novel stable transform of the IIR digital integrator is obtained by stabilizing the transform of the new integrator.
作者 王金鹏 袁晓
出处 《重庆邮电大学学报(自然科学版)》 北大核心 2012年第4期447-451,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
关键词 滤波器 数字积分器 线性组合 阶数 逼近性能. filter digital integrator linear combination order approximation theory
  • 相关文献

参考文献20

  • 1袁晓,张红雨,虞厥邦.分数导数与数字微分器设计[J].电子学报,2004,32(10):1658-1665. 被引量:47
  • 2TSENG C C.Digital Integrator Design Using RecursiveRomberg Integration Rule and Fractional Sample Delay[C]//Circuits and Systems,2007.ISCAS 2007.IEEEInternational Symposium,New Orleans:IEEE Press.2007:2726-2729.
  • 3TSENG C C.Digital IIR Integrator Design Using Richard-son Extrapolation and Fractional Delay[J].IEEE Trans-actions on circuits and systems-I:Regular Papers.2008,55(8):2300-2309.
  • 4TSENG Chien-cheng,LEE Su-ling.Design of digital IIRIntegrator Using Discrete Hartley Transform InterpolationMethod[C]//Circuits and Systems,2009.ISCAS 2009.IEEE International Symposium on,Taipei:IEEE Press,2009:2181-2184.
  • 5TSENG Chien-cheng.Closed-Form Design of Digital IIRIntegrators Using Numerical Integration Rules and Frac-tional Sample Delays[J].IEEE Transactions on circuitsand systems-I:Regular Papers.2007,54(3):643-655.
  • 6WILLIAM H P,SAUL A T,WILLIAM T V,et al.Flan-nery.Numerical Recipes-The Art of Scientific Compu-ting,3nd ed[M].New York:Cambridge UniversityPress,2007.
  • 7ENDRE S,DAVID F M.An Introduction to NumericalAnalysis[M].New York:Cambridge University Press,2003.
  • 8STEVEN T K.Numerical Analysis Using MATLAB andSpreadsheets Second Edition[M].Orchard Publications.2004.
  • 9AL-ALOUI M A.Novel Class of Digital Integrators andDifferentiators[J].IEEE transactions on Signal Process-ing.2009,pp(99):1-1.
  • 10AL-ALOUI M A.Al-Alaoui operator and the new trans-formation polynomials for discretization of analogue sys-tems[J].Electrical Engineering,2008,90(6):455-467.

二级参考文献26

  • 1Jenn-Sen Leu,A Papamarcou.On estimating the spectral exponent of fractional Brownian motion[J].IEEE Trans IT,1995,41(1):233-244.
  • 2Szu-Chu Liu,Shyang Chang.Dimension Estimation of discrete-time fractional Brownian Motion with applications to image texture classification[J].IEEE Trans.On Image Processing,1997,6(8):1176-1184.
  • 3B Ninness.Estimation of 1/f noise[J].IEEE Trans IT,1998,44(1):32-46.
  • 4Jen-Chang Liu,Wen-Liang Hwang,Ming-syan Chen.Estimation of 2-D noisy fractional Brownian motion and its applications using wavelets[J].IEEE Trans IP,2000,9(8):1407-1419.
  • 5B Mbodje,G Montseny.Bounary fractional derivative control of the wave equation[J].IEEE Trans.Automat.Control,1995,40(2):378-382.
  • 6Om P Agrawal.Solution for a fractional diffusion-wave equation defined in a bounded domain[J].Nonlinear dynamics,2002,29:145-155.
  • 7N Engheta.On the role of fractional calculus in electromagneic theory[J].IEEE Antennas Propagation Mag.1997,39(4):35-46.
  • 8M Unser,T Blu.Fractional splines and wavelets[J].SIAM Review,2000,42(1):43-47.
  • 9M Unser.Splines,a perfect fit for signal and image processing.IEEE SP Mag,Nov.1999:22-38.
  • 10T T Hartley,C F Lorenzo,H K Qammat.Chaos in a fractional order Chua's system[J].IEEE Trans CAS I,1995,42(8):485-490.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部