期刊文献+

大鼠髁突软骨细胞冻存复苏后的生物学特性观察 被引量:3

Observation of biological characteristics on rat condylar chondrocytes after frozen-thawing
原文传递
导出
摘要 目的观察低温冻存1月后,不同年龄大鼠髁突软骨细胞的生物学特性。方法体外培养出生后1天、7天、14天、28天共4组SD大鼠髁突软骨细胞。对冻存复苏后的细胞进行形态学观察;甲苯胺蓝染色、Ⅱ型胶原免疫组化染色检测其对糖胺聚糖(GAG)、Ⅱ型胶原的合成能力;台盼蓝拒染试验测定细胞成活率;MTT法观察细胞增殖能力;实时定量-聚合酶链式反应(real time-PCR)检测冻存后细胞增殖核抗原(PCNA)基因表达情况。结果低温冻存后,各年龄组大鼠髁突软骨细胞仍能保持软骨细胞特有的形态及特性;细胞成活率均大于90%;生长曲线近似"S"型;冻存后各年龄组细胞pcna基因表达较冻存前无显著统计学差异(P>0.05)。结论低温冻存1月后的大鼠髁突软骨细胞成活率高,并保持了其生物学特性及增殖活性。 Objective To study the biological characteristics of rat condylar chondrocytes after 1 month frozenthawing. Methods The 1, 7, 14 and 28 day-old SD rat condylar chondrocytes were cultured in vitro. The morphology of frozen-thawed chondrocytes was observed, and their ability to synthesizing glycosaminoglycans (GAG) and type II collagen was determined by toluidine blue stain and type II collagen immunohistochemistry reaction.Viability and the proliferation activity were detected by trypan blue exclusion method, MTT assay. Otherwise, real time-PCR was performed by using proliferation cell nuclear antigen (PCNA) specific primers to detect its gene expresion. Results The frozenthawed condylar chondrocytes could still keep the morhoplogy and biological characteristics of cartilage chondrocytes specially; Cell viability was over 90%. The growth curve of condylar ehondrocytes resembled "S" in shape. Proliferation cell nuclear antigen (PCNA) gene expression changed little between the before- and after-cryopresevation condylar chondroctyes (P 〉0.05). Conclusion Rat condylar chondrocytes after 1 month frozen-thawing still maintain their biological characteristics, proliferation activity and keep high viability .
出处 《现代口腔医学杂志》 CAS CSCD 2012年第4期251-257,共7页 Journal of Modern Stomatology
基金 上海市科委医学引导项目<下颌不对称畸形早期干预对髁突发育影响的实验研究>(114119a3500)
关键词 髁突 软骨细胞 冻存 生物学特性 Condyle Chondrocyte Cryopreservation Biological characteristic
  • 相关文献

参考文献24

  • 1Meik|e MC. Remodeling the dentofacial skeleton: the biological basis of orthodontics and dentofacial orthopedics. J Den Res, 2007, 86(1): 12-24.
  • 2Guan J, Urban JP, Li ZH, et al.Effects of rapid cooling on articular cartilage. Cryobiology, 2006, 52(3): 430-439.
  • 3Almqvist KF, Wang L, Broddelez C, et al. Biological freezing of human articular chondrocytes. Osteoarthritis Cartilage, 2001, 9(4): 341-350.
  • 4Anna Weiss, Erella Livne, Klaus Von Der Mapk, et al. Gro- wth and repair of cartilage: organ culture system utilizing chondroprogenitor ceils of condylar cartilage in newborn mice. Journal of bone and mineral research, 1988, 3(1): 93-100.
  • 5Rendal-V 6 zquez ME, Maneiro-Pamp - n E, Rodr i guez-Ca- barcos M, et al. Effect of cryopreservation on human articular chondrocyte viability, proliferation, and collagen expression. Cryobiology, 2001, 42(1): 2-10.
  • 6Livak K J, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the2 [-DehaDehaC (T)] Method. Methods, 2001, 25(4): 402-408.
  • 7Embree MC, Kilts TM, Ono M, et al. Biglycan and fibrom- odulin have essential roles in regulating chondrogenesis and extracellular matrix turnover in temporomandibular joint osteoarthritis. Am J Pathol, 2010, 176(2): 812-826.
  • 8Pegg DE, Wusteman MC, Wang L. Cryopreservation of articular cartilage. Part 1: Conventional cryopreservation methods. Cryobiology, 2006, 52(3): 335-346.
  • 9Ryoichi Nakanishi, Cryopreservation of the tracheal grafts: Review and perspective. Organogenesis, 2009, 5 ( 3 ): 113-118.
  • 10b Smith AU. Survival of frozen chondrocytes isolated from cartilage of adult mammals. Nature, 1965, 205(4973): 782-784.

同被引文献78

  • 1Richard Monahan, Karen Seder, et al. Hemifacial microsomiaEtiology, diagnosis and treatment. J Am Dent Assoc, 2001,132(10): 1402-1408.
  • 2Abdullah A. Al-kalaly, Fiona Y.C. Leung, Ricky W.K.Wong,et al. The molecular markers for condylar growth: experimentalan dclinical implications. Orthodontic waves, 2009, 68 (2):51-56.
  • 3Wang L, Lazebnik M, Detamore MS. Hyaline cartilage cellsoutperform mandibular condyalr cartilage cells in a TMJfibrocartilage tissue engineering application. OsteoarthritisCartilage, 2009, 17(3): 346-353.
  • 4Jiao K, Wang MQ, Niu LN, et al. Death and proliferation ofchondrocytes in the degraded mandibular condylar cartilage ofrats induced by experimentally created disordered occlusion.Apoptosis, 2009,14(1): 22-30.
  • 5Jiao K, Dai J, Wang MQ, et al. Age-and sex-related changesof mandibular condylar cartilage and subchondral bone: ahistomorphometric and micro-CT study in rats. Arch Oral Biol,2010, 55(2): 155-163.
  • 6Bibb CA, Pullinger AG, Baldioceda F. The relationship ofundifferentiated mesenchymal cells to TMJ articular tissuethickness. J Dent Res, 1992,71(11): 1816-1821.
  • 7Rabie AB, Hagg U. Factors regulating mandibular condylargrowth. Am J Orthod Dentofacial Orthop,2002, 122(4): 401-409.
  • 8J.W.Von den Hoff, Delatte M. Interplay of mechanical loadingand growth factors in the mandibular condyle. Arch Oral Biol,2008, 53(8): 709-715.
  • 9Abdullah A. Al-kalaly, Fiona Y.C.Leung, Ricky W.K. Wong,et al. The molecular markers for condylar growth: Experimentaland clinical implications. Orthodontic waves, 2009, 68 (2):51-56.
  • 10Sriram D, Janes A, Alatli-Burt I,et al. Effects of mechanicalstimuli on adaptive remodeling of condylar cartilage. J DestRes, 2009,88(5): 466-470.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部