期刊文献+

基于数据流异常监测的软件容错纠错方法

Software Fault Tolerance and Fault Rectification Approach Based on Data Flow Abnormity Supervision
下载PDF
导出
摘要 针对可能出现的软件系统故障,提出了一种新的基于数据流异常监测、软件看门狗技术和回卷恢复技术的软件容错纠错方法。该方法定期对目标程序进行备份,通过提取目标程序中的一组相关变量建立数据流分析模型,利用数据流的异常检测排查出其中的离群点即出错点。提出了上述软件容错纠错策略的实现框架、操作流程,研究了基于最小二乘支持向量机的二元回归模型和离群点检测算法。以二元函数为例,对该文的二元回归模型和离群点检测算法进行了仿真研究,仿真结果验证了回归模型的正确性和离群点检测算法的有效性。 Aiming at possible failure in software system, a novel software fault tolerance and fault rectification approach is proposed based on data flow abnomity supervision, software watch dog technique and rollback recover technique. This approach backups the object program regularly, establishes data flow analysis model by extracting a group of related variables in object program, and filtrates 'outliers' from the data flow by using data flow abnormity detection method. Implementation framework, operation procedure for above software fault tolerance and fault rectification strategy are presented. Binary regression model based on least square-support vector machine and 'outliers' detection algorithm are also studied. Simulation results demonstrate the correctness of the binary regression model and the validity of the 'outliers' detection algorithm.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2012年第4期586-591,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(50775027) 流体动力与机电系统国家重点实验室开放基金(GZKF-201029) 机械传动国家重点实验室开放基金(SKLMT-KFKT-201010)
关键词 二元回归 数据流 纠错 容错 可靠性 回卷恢复 binary regression data flow fault rectification fault tolerance reliability rollback recovery
  • 相关文献

参考文献8

二级参考文献39

  • 1屈婉霞,蒋句平,杨晓东,徐炜遐.并行计算机系统容错设计[J].计算机工程与科学,2005,27(9):69-70. 被引量:3
  • 2[1]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag,1995.
  • 3[2]Vapnik V N. An overview of statistical learning theory[J]. IEEE Trans Neural Network,1999,10(5):988-999.
  • 4[3]Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer-Verlag,1999.
  • 5[4]Probenl L P. A set of neural network benchmark problem and benchmark rules[R]. Germany: University Karlsruhe,1994.
  • 6[5]Turney P D. Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm[J]. J of Artificial Intelligence Research,1995,2:369-409.
  • 7[1]Vapnik V N.Statistical Learning Theory[M].NY:Springer-Verlag,1998.
  • 8[2]Smola A J.Learning with kerrnels[D].Berlin:Technische Universityat,1998.
  • 9[3]Chang C C,Lin C J.LIBSVM:A library for support vector machine[EB/OL].(2001-03-04).http://www.csie.ntu.edu.tw/~ cjlin/libsvm.
  • 10[5]WANG Jing,SUN Shuyi.Predictive control based on support vector machine model[C]//Proc 6th WCICA.Dalian:2006:1683-1687.

共引文献2574

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部