摘要
针对入侵检测中部分攻击类型检测率低的问题,提出一种基于核学习的入侵检测改进方法。采用核主成分分析(KPCA)对入侵检测中的高维非线性结构数据集进行数据预处理,通过支持向量数据描述(SVDD)构造分类器,对预处理后的数据进行分类。实验结果表明,与已有方法相比,改进方法的检测精度较高、漏检率较低。
Due to low detection rate about some attack types in intrusion detection, this paper presents an improved intrusion detection method based on kernel learning. Because of high dimensional and nonlinear structure dataset in intrusion detection, Kernel Principal Component Analysis(KPCA) is presented to preprocess the dataset. The classifier is developed by Support Vector Data Description(SVDD), and the data through preprocessed is applied in the classifier. Experimental results show that the improved method can acquire higher detection precision and lower missed detection rate.
出处
《计算机工程》
CAS
CSCD
2012年第14期21-25,共5页
Computer Engineering
基金
国家自然科学基金资助项目(61163036
61163039)
甘肃省自然科学基金资助项目(1010RJZA022
1107RJZA112)
西北师范大学第三期知识与创新工程科研骨干基金资助项目(nwnu-kjcxgc-03-67)
关键词
核学习
核主成分分析
支持向量数据描述
入侵检测
异常检测
kernel learning
Kernel Principal Component Analysis(KPCA)
Support Vector Data Description(SVDD)
intrusion detection
abnormal detection