期刊文献+

基于核学习的入侵检测改进方法

Improved Intrusion Detection Method Based on Kernel Learning
下载PDF
导出
摘要 针对入侵检测中部分攻击类型检测率低的问题,提出一种基于核学习的入侵检测改进方法。采用核主成分分析(KPCA)对入侵检测中的高维非线性结构数据集进行数据预处理,通过支持向量数据描述(SVDD)构造分类器,对预处理后的数据进行分类。实验结果表明,与已有方法相比,改进方法的检测精度较高、漏检率较低。 Due to low detection rate about some attack types in intrusion detection, this paper presents an improved intrusion detection method based on kernel learning. Because of high dimensional and nonlinear structure dataset in intrusion detection, Kernel Principal Component Analysis(KPCA) is presented to preprocess the dataset. The classifier is developed by Support Vector Data Description(SVDD), and the data through preprocessed is applied in the classifier. Experimental results show that the improved method can acquire higher detection precision and lower missed detection rate.
出处 《计算机工程》 CAS CSCD 2012年第14期21-25,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61163036 61163039) 甘肃省自然科学基金资助项目(1010RJZA022 1107RJZA112) 西北师范大学第三期知识与创新工程科研骨干基金资助项目(nwnu-kjcxgc-03-67)
关键词 核学习 核主成分分析 支持向量数据描述 入侵检测 异常检测 kernel learning Kernel Principal Component Analysis(KPCA) Support Vector Data Description(SVDD) intrusion detection abnormal detection
  • 相关文献

参考文献19

  • 1蔡忠闽,管晓宏,邵萍,彭勤科,孙国基.基于粗糙集理论的入侵检测新方法[J].计算机学报,2003,26(3):361-366. 被引量:57
  • 2Pillai M M, Eloff J H P, Venter H S. An Approach to Implement a Network Intrusion Detection System Using Genetic Algo- rithms[C]//Proc, of SAI-CSIT'04. [S. 1.]: ACM Press, 2004.
  • 3Booker L B, Goldberg D E, Holland J H. Classifier Systems and Genetic Algorithms[J]. Artificial Intelligence, 1989, 40(1): 235-282.
  • 4Yu Shengchen, Guo Hui, Yu Guixian. The Solution to How to Select an Optimal Set of Features from Many Features Used to Intrusion Detection System in Wireless Sensor Network[C]//Proc. of the 2nd WRI Global Congress on Intelligent Systems. Wuhan, China: [s. n.], 2010.
  • 5VapnikV 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 6饶鲜,董春曦,杨绍全.基于支持向量机的入侵检测系统[J].软件学报,2003,14(4):798-803. 被引量:135
  • 7SchOlkopf B, Smola A J. Learning with Kernels Support Vector Machines, Regularization, Optimization, and Beyond[M]. Cambridge, USA: MIT Press, 2002.
  • 8Kim D S, Nguyen H N, Park J S. Genetic Algorithm to Improve SVM Based Network Intrusion Detection System[C]//Proc..of AINA'05. [S. 1.]: IEEE Press, 2005.
  • 9陈友,沈华伟,李洋,程学旗.一种高效的面向轻量级入侵检测系统的特征选择算法[J].计算机学报,2007,30(8):1398-1408. 被引量:46
  • 10SchOlkopf B, Platt J C, Taylor J S, et al. Estimating the Sup- port of a High-dimensional Distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.

二级参考文献46

  • 1唐焕文,张立卫,王雪华.一类约束不可微优化问题的极大熵方法[J].计算数学,1993,15(3):268-275. 被引量:75
  • 2唐焕文,张立卫.凸规划的极大熵方法[J].科学通报,1994,39(8):682-684. 被引量:49
  • 3李兴斯.一类不可微优化问题的有效解法[J].中国科学(A辑),1994,24(4):371-377. 被引量:137
  • 4陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 5张学工译.统计学习理论的本质[M].北京:清华大学出版社,1995..
  • 6[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 7[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 8[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 9[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 10[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.

共引文献361

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部