期刊文献+

CDC与REP结合的决策树剪枝优化算法 被引量:4

Decision Tree Pruning Optimization Algorithm of CDC and REP Combination
下载PDF
导出
摘要 为改善剪枝算法单一的事前剪枝或事后剪枝导致分类响应时间长、准确度低的问题,在REP事后剪枝的基础上,提出一种CDC与REP结合的决策树剪枝优化算法。使用CDC算法在生成决策树的同时,利用左右子树节点差异比来排除部分非叶子节点,决策树生成后再通过REP算法对决策树进一步剪枝。实验结果表明,该算法可避免庞大决策树的生成过程过于细化导致过于拟合的现象,与其他算法相比,能减少分裂时间,提高决策树分裂的正确率。 Combined with the Child Difference Choose(CDC) method, a new method comes out based on the Reduced Error Pruning(REP) after pruning method, which improves the situation of longer time and lower accuracy result from the single pattern of pruning ways. CDC is to generate a decision tree while taking advantage of differences between left and right sub-tree nodes to exclude some non-leaf node. And makes a further pruning to the decision tree approaching REP method after generating a decision tree. Experimental results show that the method avoids the phenomenon of over-fitting because that the decision tree is too detailed, and compared with other methods, it greatly reduces the time of split. At the same time, approaching the further priming, it is proved to have a high accuracy again.
出处 《计算机工程》 CAS CSCD 2012年第14期32-34,共3页 Computer Engineering
基金 国家自然科学基金资助项目(61172144) 辽宁省教育厅基金资助项目(2009A350)
关键词 决策树 剪枝 CDC算法 REP算法 叶子节点 decision tree pruning Child Difference Choose(CDC) algorithm Reduced Error Pruning(REP) algorithm leaf node
  • 相关文献

参考文献9

  • 1HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 2李道国,苗夺谦,俞冰.决策树剪枝算法的研究与改进[J].计算机工程,2005,31(8):19-21. 被引量:30
  • 3魏红宁.决策树剪枝方法的比较[J].西南交通大学学报,2005,40(1):44-48. 被引量:43
  • 4Breiman L, Friedman J, Olshen R A, et al. Classification and Regression Trees[M]. Belmont, USA: [s. n.], 1984.
  • 5Quinlan J R. Simplifying Decision Trees[J]. International Journal of Man-Machine Studies, 1987, 27(3): 221-234.
  • 6Niblett T, Bratko I. Learning Decision Rules in Noisy Domains[C]//Proceedings of the 6th Annual Technical Conference on Research and Development in Expert Systems. Cambridge, UK: Cambridge University Press, 1986: 25-34.
  • 7Mei K, Rovnyak S M. Response-based Decision Trees To Trigger One-shot Stabilizing Control[J]. IEEE Transactions on Power Systems, 2004, 19(1): 531-537.
  • 8李仁良,李义杰.基于多策略的决策树剪枝算法及其应用[J].计算机仿真,2010,27(11):78-81. 被引量:8
  • 9由军平,卫金茂,王名扬.基于粗集理论的决策树剪枝[J].计算机工程与科学,2007,29(1):123-125. 被引量:2

二级参考文献22

  • 1邵峰晶,于忠清.数据挖掘原理[M].北京:中国水利出版社,2003.
  • 2HongJia Rong. AEI: an extension approximate method for genrale overing problem[ J]. International Journal of Computer and Information Science, 1985,14 (6) :421 - 437.
  • 3毛国君,等.数据挖掘原理与算法[M].北京:清华大学出版社,2006.
  • 4J R Quinlan. Simplifying decision trees[ J ]. International Journal of Man - Machine Studies, 1987,27(3) :221 -234.
  • 5B Cestnik, I Bratko. On estimating probabilities in tree pruning [ C ]. Proc of European Working Sessions on Learning, Porto: Springer - Verlag, 1991. 138 - 150.
  • 6D Foumier, B Cremilleux. A quality index for decision tree pruning[ J ]. Knowledge - based Systems, 2002,15 ( 1 ) :37 - 43.
  • 7Oates T, Jemen D. The effects of training set sizes on decision tree[A]. Proc of the 14th Int'l Conf on Machine Learning[C]. Nashville: Morgan Kaufman, 1997. 254-262.
  • 8Breslow L A, A_ha D W. Simplifying decision trees: a survey[J]. Knowledge Engineering Review, 1997. 12( 1 ) : 1-40.
  • 9Breiman L, Friedman J, Olshen R A, et al. Classification and regression trees[ M]. Belmont: Wadsworth, 1984. 1-358.
  • 10Nobel A. Analysis of a complexity based pruning scheme for classification trees [ J ]. IEEE Transactions on Information Theory, 2002, 48 (8) : 2 362-2 368.

共引文献218

同被引文献32

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部