期刊文献+

基于离散余弦变换的图像局部特征描述子 被引量:2

Image Local Feature Descriptor Based on Discrete Cosine Transform
下载PDF
导出
摘要 针对尺度不变特征变换(SIFT)描述子受光照变化影响较大的缺点,提出一种基于离散余弦变换(DCT)的图像局部不变特征描述子。在DCT变换的基础上,忽略高频系数,使用少数中低频系数组成特征矩阵,以降低描述子的维数。利用DCT频率系数正负性对光照变化不敏感的特点,在计算描述子间距离时设置惩罚因子,以提高描述子的可区分性。测试结果表明,与SIFT描述子相比,该描述子具有较好的显著性,且查全率和查准率较高。 Because Scale Invariant Feature Transform(SIFT) descriptor is likely influenced by illumination changes, this paper proposes a kind of Discrete Cosine Transform(DCT)-based local invariant feature descriptor. The descriptor uses the characteristics of DCT, ignoring high-frequency coefficients, and reduces the dimension. It is composed of a small numbers of compositions of low-frequency coefficient matrix. As the sign of the DCT frequency coefficient is not sensitive to illumination changes, the proposed descriptor improves the descriptor distinction by setting penalty factor in the calculation of the distance between the descriptors. ResuR of the implementation test shows that the proposed descriptor has better significance, recall rate and precision than SIFT descriptor.
出处 《计算机工程》 CAS CSCD 2012年第14期173-176,共4页 Computer Engineering
基金 国家科技支撑计划基金资助项目(2008BAK52B05)
关键词 尺度不变特征变换 局部不变特征 离散余弦变换 图像描述子 图像匹配 惩罚因子 Scale Invariant Feature Transform(SIFT) local invariant feature Discrete Cosine Transform(DCT) image descriptor image match penalty factor
  • 相关文献

参考文献9

  • 1Lowe D G. Object Recognition from Local Scale-invariant Fea- tures[C]//Proceedings of IEEE International Conference on Computer Vision. Kerkyra, Greece: Is. n.]: 1999.
  • 2程邦胜,唐孝威.Harris尺度不变性关键点检测子的研究[J].浙江大学学报(工学版),2009,43(5):855-859. 被引量:23
  • 3Smith S M, Brady J M. SUSAN-A New Approach to Low Level Image Processing[J]. International Journal of Computer Vision, 1997, 23(1): 45-78.
  • 4Yan Ke, Sukthankar R. PCA-SIFT: A More Distinctive Represen- tation for Local Image Descriptors[C]//Proceedings of 2004 Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: [s. n.], 2004.
  • 5姜晓彤,罗立民,赵正旭.一种改进的基于互信息和梯度特征的图像配准方法的研究[J].仪器仪表学报,2006,27(9):1141-1146. 被引量:20
  • 6Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 7Ke Yan, Sukthankar R. PCA-SIFT: A More Distinctive Represen- tation for Local Image Descriptors[C]//Proceedings of 2004 Conference on Computer Vision and Pattern Recognition. Washington D. C., USA: [s. n.], 2004.
  • 8Ahmed N, Natarajan T. Discrete Cosine Transform[J]. IEEE Transactions on Computers, 1974, 24(7): 90-93.
  • 9Wallace G K. The JPEG Still Picture Compression Standard[J]. IEEE Transactions on Consumer Electronics, 1992, 38(1): 30-44.

二级参考文献25

  • 1SCHMID C, MOHR R, BAUCKHAGE C. Evaluation of interest point detectors [J]. International Journal of Computer Vision, 2000, 37(2): 151- 172.
  • 2HARRIS C, STEPHENS M. A combined corner and edge detector [C]// Alvey Vision Conference. Manchester: [s. n. ], 1988:147 - 151.
  • 3LINDEBERG T. Edge detection and ridge detection with automatic scale selection [J]. International Journal of Computer Vision, 1998, 30(2) : 117 - 156.
  • 4LINDEBERG T. Feature detection with automatic scale selection [J]. International Journal of Computer Vision, 1998, 30(2): 79-116.
  • 5MIKOLAJCZYK K, SCHMID C. Indexing based on scale invariant interest points [C]// Proceedings of the 8th IEEE International Conference of Computer Vision. Vancouver: IEEE, 2001: 525- 531.
  • 6MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors [J].International Journal of Computer Vision, 2004, 60(1) : 63 - 86.
  • 7LOWE D. Object recognition from local scale-invariant features [C]// Proceedings of the 7th IEEE International Conference on Computer Vision. Corfu: IEEE, 1999: 1150 - 1157.
  • 8LOWE D. Distinctive image features from scale-invariant keypoints [J].International Journal of Computer Vision, 2004, 60(2) : 91 - 110.
  • 9MIKOLAJCZYK K, TUYTELAARS T, SCHMID C, et al. A comparison of affine region detectors [J].International Journal of Computer Vision, 2005, 65 ( 1/ 2) : 43 - 72.
  • 10JOSIEN P, ANTOINE J, MAX V. Image registration by maximization of combined mutual information and gradient information[J]. IEEE Trans on Medical Image, 2000,19 (8):809.

共引文献41

同被引文献14

  • 1Misra S,Reisslein M,Xue G.A survey of multimediastreaming in wireless sensor networks. IEEE Communica.tions Surveys and Tutorials,2008,32(10):18-39.
  • 2Charfi Y,Wakamiya N,Murata M. Challenging issues in vi.sual sensor networks. Tech Rep, Advanced Network Archi.tecture Laboratory,Osaka University,2007,25(4):1054-1056.
  • 3Donoho D.Compressed sensing. IEEE Trans InformationTheory,2006,52(4): 1289-1306.
  • 4Candes E,Romberg J,Tao T. Robust uncertainty princi-ples: exact signal reconstruction from highly incompletefrequency information. IEEE Trans Information Theory,2006,52(4): 489-509.
  • 5Kim S,Koh K,Lustig M,et al. An interior-point methodfor large-scale 11 regularized least squares. IEEE Journalof Selected Topics in Signal processing,2007,12(4): 606-617.
  • 6Skretting,K,Engan,K.Recursive Least Squares DictionaryLearning Algorithm. IEEE Transactions on Signal Process-ing,2010,58(4):50-56.
  • 7陈波,王红霞,成礼智.图像压缩中的快速方向离散余弦变换[J].软件学报,2011,22(4):826-832. 被引量:12
  • 8戴琼海,付长军,季向阳.压缩感知研究[J].计算机学报,2011,34(3):425-434. 被引量:216
  • 9焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 10李莎,黄琳,周剑奇,沈海阔.基于小波变换的SAR图像压缩算法研究[J].计算机测量与控制,2012,20(8):2310-2312. 被引量:4

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部