期刊文献+

基于超复视域注意模型的视频分割算法

Video Segmentation Algorithm Based on Hypercomplex Visual Attention Model
下载PDF
导出
摘要 提出一种基于超复视域注意模型的视频分割算法,无需事先针对特定类型的目标进行训练。通过构造超复视域注意帧图像,对超复视域注意帧图像计算相位相关实现运动建模,利用条件随机场对视域注意模型、颜色模型以及邻域关系模型进行约束求解,获得分割结果。采用不同的视频数据对该算法的有效性进行测试,并与其他分割算法的结果进行比较。实验结果表明,该算法的分割错误率较低。 Automatically segmenting out non-specific objects from moving background is a difficult problem. A method based on hypercomplex visual attention model for video segmentation is proposed, which does not require training specific class of objects. The algorithm constructs hypercomplex visual attention frames to model motion via computing phase correlation. Conditional random fields are used to+ constrain visual attention models, color models and neighboring relationship models to obtain segmentation results. Experimental results demonstrate the validity of proposed algorithm, and results show that the error rate is lower compared with other algorithms by using different video data.
出处 《计算机工程》 CAS CSCD 2012年第14期217-219,共3页 Computer Engineering
基金 浙江省自然科学基金资助项目(Y1110781)
关键词 视频分析 视频分割 超复变换 视域注意模型 条件随机场 邻域关系模型 video analysis video segmentation hypercomplex transformation visual attention model conditional random field neighboring relationship model
  • 相关文献

参考文献8

  • 1Stauffer C, Grimson W. Learning Pattems of Activity Using Real- time Tracking[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(8): 747-757.
  • 2褚一平,陈勤,黄叶珏,张三元.基于判别模型的视频前景/阴影自动分割算法[J].模式识别与人工智能,2008,21(6):849-855. 被引量:6
  • 3Wang Yang, Loe Kia-Fock, Wu Jiankang. A Dynamic Conditional Random Field Model for Foreground and Shadow Segmentation[J] IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(2): 279-289.
  • 4褚一平,陈勤,黄叶珏,郑河荣.基于随机蕨丛的双层视频分割算法[J].模式识别与人工智能,2009,22(3):463-467. 被引量:4
  • 5Chum O, Zisserman A. An Exemplar Model for Learning Object Classes[C]//Proc. of the IEEE Conference on Computer Vision and Pattern Recognition. [S. 1.]: IEEE Press, 2007.
  • 6Yin Pei, Criminisi A, Essa I, et al. Tree-based Classifiers for Bilayer Video Segmentation[C]//Proc. of Conference on Computer Vision and Pattern Recognition. [S. 1.]: IEEE Press, 2007.
  • 7Guo Chenlei, Ma Qi, Zhang Liming. Spatiotemporal Saliency Detection Using Phase Spectrum of Quaternion Fourier Transform[C]//Proc. of IEEE Conference on Computer Vision and Pattern Recognition. [S. 1.]: IEEE Press, 2008: 1-8.
  • 8ltti L, Koch C, Niebur E. A Model of Saliency-based Visual Attention for Rapid Scene Analysis[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.

二级参考文献41

  • 1陈睿,邓宇,向世明,李华.结合强度和边界信息的非参数前景/背景分割方法[J].计算机辅助设计与图形学学报,2005,17(6):1278-1284. 被引量:13
  • 2Yang Tao, Li S Z, Pan Quan, et al. Real-Time and Accurate Segmentation of Moving Objects in Dynamic Scene// Proc of the 2nd ACM International Workshop on Video Surveillance and Sensor Networks. New York, USA, 2004:136-143
  • 3Stauffer C, Grimson W. Learning Patterns of Activity Using Real- Time Tracking. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 747 - 757
  • 4Stenger B, Ramesh V, Paragios N, et al. Topology Free Hidden Markov Models : Application to Background Modeling//Proc of the 8th IEEE International Conference on Computer Vision. Vancouver,Canada, 2001, Ⅰ: 294-301
  • 5Martel-Brisson N, Zaccarin A. Moving Cast Shadow Detection from a Gaussian Mixture Shadow Model // Proc of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005, Ⅱ: 643 -648
  • 6Porikli F, Thornton J. Shadow Flow: A Recursive Method to Learn Moving Cast Shadows//Proc of the 10th IEEE International Conference on Computer Vision. Beijing, China, 2005, Ⅰ : 891 -898
  • 7Yoneyama A, Yeh C H, Kuo C C J. Moving Cast Shadow Elimination for Robust Vehicle Extraction Based on 2D Joint Vehicle/Shadow Models// Proc of the IEEE Conference on Advanced Video and Signal Based Surveillance. Miami, USA, 2003 : 229 - 236
  • 8Chen Baisheng, Lei Yunqi. Indoor and Outdoor People Detection and Shadow Suppression by Exploiting HSV Color Information // Proc of the 4th International Conference on Computer and Information Technology. Wuhan, China, 2004:137 - 142
  • 9Salvador E, Cavallaro A, Ebrahimi T. Cast Shadow Segmentation Using Invariant Color Features. Computer Vision and Image Understanding, 2004, 95(2): 238-259
  • 10Migdal J, Grimson E. Background Subtraction Using Markov Thresholds// Proc of the IEEE Workshop on Motion and Video Computing. Breckenridge, USA, 2005, Ⅱ: 58 -65

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部