期刊文献+

缓冲气体压力对铷原子吸收特性的影响 被引量:1

Influence of Buffer Gas Pressure on Rubidium Atomic Absorption
下载PDF
导出
摘要 铷原子吸收线宽很窄,通过充入定量缓冲气体,可以加宽铷原子的泵浦吸收线宽,从而可以提高铷原子对泵浦光的吸收效率。通过计算模拟,找到入射泵浦光谱宽、入射泵浦强度和缓冲气体压力之间的对应关系,找到最佳的实验工作条件,最终实现铷原子对离泵浦中心频率一定范围内的泵浦吸收效率很高,同时保证在泵浦谱宽范围内的总泵浦吸收效率也很高。模拟结果显示:随着缓冲气体压力的增大,铷原子吸收线宽不断增加,但是泵浦光的总吸收效率下降的并不明显。 The absorption linewidth of the rubidium atom is very narrow, the pump absorption linewidth of the rubidium atom can be wider by filling a ration of buffer gas, and the absorption rate of the pump light can be also improved. The correspondence among the incident pump spectral width, incident pump intensity and the buf- fer gas pressure is gained, the best working conditions are also found. The high pump absorption efficiency from the center frequency for rubidium atom can be achieved, the total pump absorption efficiency within the spectral width can be also ensured. The simulation results show that with the increasing of the buffer gas pressure, the ab- sorption linewith of the rubidium atom increases, but the total absorption efficiency of the pump light decreases unobviouslv.
出处 《光电技术应用》 2012年第3期46-49,共4页 Electro-Optic Technology Application
基金 国家部委基金(9140C150104100C1501)
关键词 原子吸收线宽 吸收效率 模拟 中心频率 atomic absorption linewidth absorption efficiency simulation center of frequency
  • 相关文献

参考文献12

  • 1Beach R J, Krupke W F. End-pumped continuous-wave al- kali vapor lasers: experiment,model, and power scaling[J]. Journal of the Optical Society of America, 2004, 21 (12): 2151-2163.
  • 2Zweiback J, Komashko A, Krupke W F. Alkali vapor lasers [C]//Proc of SPIE, 2010: 68740G.
  • 3Page R H, Beach R J, Kanz V K, et al. Multimode-di- ode-pumped gas(alkali-vapor) laser[J]. Op. tLett, 2006, 31 (3): 353-355.
  • 4Gordon D H, Glen P P. Extended saturation analysis and an- alytical model of dio-de pumped alkali lasers[C]//Proc of SPIE, 2010: 75810J.
  • 5余建华,祝强,谢武,郑伟,唐淳.高功率半导体激光抽运碱金属蒸汽激光器[J].激光与光电子学进展,2006,43(7):46-51. 被引量:13
  • 6Zhdanov B V, Knize R J. Diode-pumped 10 W continuous wave Cesium laser[J]. Opt.Lett,, 2007,32( 15):2167-2169.
  • 7周炳琨,高以智,陈倜嵘,等.激光原理[M].北京:国防工业出版社,2005.
  • 8Koechner W. Solid-State Laser Engineering[M]. Fifth ed. 2005.
  • 9杨子宁,王红岩,陆启生,李元栋,许晓军.光谱特性对半导体泵浦碱蒸气激光器性能的影响[J].强激光与粒子束,2010,22(10):2257-2262. 被引量:8
  • 10Tam A, Moe G, Happer W. Particle formation by resonant laser light in alkali-metal vapor[J]. Phys.Rev.Lett,1975,35: 1630-1633.

二级参考文献23

  • 1梅遂生.向100kW进军的固体激光器——浅析国外高能固体激光技术发展现状与趋势[J].激光与光电子学进展,2005,42(10):2-8. 被引量:24
  • 2杜祥琬.对高平均功率DPL的几点认识[J].强激光与粒子束,2005,17(B04):1-3. 被引量:6
  • 3Krupke W F,Kanz V K,Payne S A.Resonance transition 795 nm rubidium laser[J].Opt Lett,2003,28(23):2336-2338.
  • 4Page P H,Beach R J,Kanz V K,et al.Multimode-diode-pumped gas (alkali-vapor) laser[J].Opt Lett,2006,31(3):353-355.
  • 5Zhdanov B V,Knize R J.Diode-pumped 10 W continuous wave cesium laser[J].Opt Lett,2007,32(15):2167-2169.
  • 6Zhdanov B V,Shaffer M K,Knize R J.Cs laser with unstable cavity transversely pumped by multiple diode lasers[J].Opt Express,2009,17(17):14767-14770.
  • 7Zweiback J,Krupke W F.28 W average power hydrocarbon free rubidium diode pumped alkali laser[J].Opt Express,2010,18(2):1444-1449.
  • 8Zweiback J,Komashko A,Krupke W F.Alkali vapor lasers[C]//Proc of SPIE.2010:68740G.
  • 9Siegmann A E.Lasers[M].California:Maple-Vail Book Manufacturing Group,1986:195-203.
  • 10Beach R J.CW theory of quasi-three level end-pumped laser oscillators[J].Opt Commun,1996,123:385-393.

共引文献21

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部