期刊文献+

双基地MIMO雷达收发角和径向速度联合估计 被引量:1

Joint DOD-DOA and Radial Velocity Estimation for Bistatic MIMO Radar
下载PDF
导出
摘要 在双基地MIMO雷达信号模型基础上,提出一种新的目标收发角和径向速度联合估计方法。该方法首先将三参数估计问题转化为非对称联合对角化问题,然后采用最小二乘循环算法对其求解,估计收发导向矩阵和速度矩阵,最后利用谱分析算法恢复收发角和径向速度。同时采用截断高阶奇异值分解(THOSVD)对数据进行压缩处理,减小运算量。该方法充分利用匹配滤波输出的所有信息,无需二维谱峰搜索,每次循环均可得到精确的闭式解。与基于并行因子(PARAFAC)分析的方法相比,该方法可获得更高的参数估计精度,且三参数自动配对。仿真表明了方法的有效性。 Based on the signal model of bistatic muhiple-input multiple-output (MIMO) radar, a new method for joint direction of departure (DOD)-direction of arrival (DOA) and radial velocity estimation is proposed. First, the estimation of three parameters is transformed into the asymmetrical joint diagonalization problem. Then, a least square cycle algorithm is used to solve it. The transmit steering matrix, receive steering matrix and velocity matrix are estimated. Finally, DOD- DOA and radial velocity are regressed by utilizing spectrum analysis algorithms. The computational cost is reduced by compressing the data via truncated high order singular value decomposition (THOSVD). The proposed method fully exploits all the information of matched filter output, without two-dimensional spectrum peak searching, and it gives an accurate closed form solution each cycle. Compared with the parallel factor (PARAFAC) decomposition based approach, it gives better parameter estimation accuracy with DOD-DOA and radial velocity automatically paired. The effectiveness of the proposed method is demonstrated by simulations.
出处 《宇航学报》 EI CAS CSCD 北大核心 2012年第7期949-955,共7页 Journal of Astronautics
基金 国家部委资助基金(9140A07010311BQ02) 南京理工大学自主科研专项计划基金(2010ZDJH05)
关键词 双基地多输入多输出雷达 收发角 径向速度 非对称联合对角化 Bistatie multiple-input multiple-output (MIMO) radar Direction of departure (DOD) -Direction of arrival (DOA) Radial velocity Asymmetrical joint diagonalization
  • 相关文献

参考文献13

  • 1Li J, Blum R S, Stoica P, et al. Introduction to issue on MIMO radar and its applications [ J ]. Selected Topics in Signal Processing, 2010, 4( 1 ) : 2 -4.
  • 2Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas [ J ]. IEEE Signal Processing Magazine, 2008, 25(1) : 116 -129.
  • 3Li J, Stoica P. MIMO radar with collocated antennas[ J~. IEEE Signal Processing Magazine, 2007, 24 ( 5 ) : 106 - 114.
  • 4Yan H D, Li J, Liao G S. Multi-target identification and localization using bistatic MIMO radar systems [ J ]. Signal Processing, 2008, 8 (2) : 1 - 8.
  • 5Zhang X, Xu L, Xu L, et al. Direction of departure (DOD) and direction of arrival (DOA) estimation in MIMO radar with reduced dimension MUSIC [ J 1. IEEE Communications Letters, 2010, 14(12): 1161-1163.
  • 6Cheng D F, Cheng B X, Qin G D. Angle estimation using ESPRIT in MIMO radar [ J 3. Electronics Letters, 2008, 44 (12) : 770 -771.
  • 7Jin M, Liao G S, Li J. Joint DOD and DOA estimation for bistatic MIMO radar[ J ]. Signal Processing, 2009, 89 (2) : 244 - 251.
  • 8ChenJL, Gu H, Su W M. A new method for joint DOD and DOA estimation in bistatic MIMO radar [ J ]. Signal Processing,2010, 90(2) : 714 -718.
  • 9张剑云,郑志东,李小波.双基地MIMO雷达收发角及多普勒频率的联合估计算法[J].电子与信息学报,2010,32(8):1843-1848. 被引量:35
  • 10Kolda T G, Bader B W. Tensor decomposition and application [Jl. SIAM Review, 2009, 51(3) : 455 -500.

二级参考文献13

  • 1Fisher E, Haimovich A, and Blum R S, et al.. Spatial diversity in radar-models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823-838.
  • 2Haimovich A M, Blum R S, and Lenard J, et al.. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116-129.
  • 3Li Jian and Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106-114.
  • 4Yan H, Li J, and Liao G. Multitarget identification and localization using bistatic MIMO radar systems[J]. EURASIP Journal on Advance in Signal Processing, 2008, 8(2): 1-8.
  • 5Jin Ming, Liao Gui-sheng, and Li Jun. Joint DOD and DOA estimation for bistatic MIMO radar[J]. Signal Processing of ELSEVIER Science, 2009, 89(2): 244-251.
  • 6Duofang C, Baixiao C, and Guodong Q. Angle estimation using ESPRIT in MIMO radar[J]. IEEE Electronics Letters, 2008, 44(12): 770-771.
  • 7Sidiropoulos N D and Bro R. Blind PARAFAC receivers for DS-CDMA systems[J]. IEEE Transactions on Signal Processing, 2000, 48(3): 810-823.
  • 8Sidropoulos N D and Giannakos G B. Parallel factor analysis in sensor array procesing[J]. IEEE Transactions on Signal Processing, 2000, 48(8): 2377-2388.
  • 9Sidiropoulos N D and Liu X. PARAFAC methods for deterministic blind beamforming identifiability[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 228-236.
  • 10Rong Y, Vorobyov S A, and Gershman A B, et al.. Blind spatial signature estimation via time-varying user power loading and parallel factor analysis[J]. IEEE Transactions on Signal Processing, 2005, 53(5): 1697-1710.

共引文献34

同被引文献11

  • 1Ning J, Farina D. Covariance and time-scale methods for blind separation of delayed sources [ J ]. IEEE Transaction on Biomedical Engineering, 2011, 58 (3): 550-556.
  • 2Zhou Y, Feng D Z, Liu J Q. A novel algorithm for two-dimensional frequency estimation [ J ]. Signal Processing, 2007, 87 ( 1 ) : 1 - 2.
  • 3Yeredor A. Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation [ J ]. IEEE Transactions on Signal Processing, 2002, 50(7): 1545-1553.
  • 4Ziehe A, Laskov P, Nohel G. A fast algorithm for joint diagonalization with non-orthogonal transformations and its application to blind source separation [ J ]. The Journal of Machine Learning Research, 2004, 5:777 -800.
  • 5Vollgaf R, Obermayer K. Quadratic optimization for simultaneous matrix diagonalization[J]. IEEE Transactions on Signal Processing, 2006, 54(9) : 3270 -3278.
  • 6Yeredor A. On using exact joint diagonalization for noniterative approximate joint diagonalization [ J ]. IEEE Signal Processing Letters, 2005,12 (9) : 645 -648.
  • 7Souloumiac A. Nonorthogonal joint diagonalization by combining givens and hyperbolic rotations[ J]. IEEE Transactions on Signal Processing, 2009, 57 (6) : 2222 -2231.
  • 8Vander A J. Joint diagonalization via subspace fitting techniques [ C ]. 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, USA, May 7 - 11, 2001.
  • 9宋海岩,朴胜春.基于高阶累积量矩阵组正交联合对角化的高分辨方位估计方法[J].电子与信息学报,2010,32(4):967-972. 被引量:10
  • 10徐先峰,冯大政.一种快速的解盲源分离新算法[J].电子学报,2010,38(12):2780-2785. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部