摘要
特定信号提取是通信信号处理中的重要问题。在约束独立分量分析方法的基础上提出了基于循环平稳约束的盲信号提取算法。该算法利用通信信号固有的循环平稳特性作为约束条件,结合独立分量分析的学习过程,同时完成特定目标信号的分离和选取,避免了经典独立分量分析方法提取"无关"源信号的过程。仿真结果表明,相比传统ICA算法,本文算法能有效提取目标源信号且提高了目标源信号的估计精度。
Signals of interest (SOIs) extraction is a vital issue in the field of communication signal processing. In this paper, the cyclostationary property of communication signals is incorporated into the constrained ICA (cICA) framework to form a new constrained optimization problem. The approach incorporates cyclostationarity constraints in the ICA process to perform separation and selection of the SOIs simultaneously. Numerical simulations demonstrate the effectiveness and higher performance of the proposed algorithm compared with the conventional ICA algorithms such as FastICA.
出处
《宇航学报》
EI
CAS
CSCD
北大核心
2012年第7期978-983,共6页
Journal of Astronautics
基金
教育部新世纪人才支持计划