期刊文献+

人脸识别应用中的Gabor核选择算法(英文)

Gabor feature optimization method and its application to face recognition
下载PDF
导出
摘要 因为Gabor特征的维数很高并且存在大量信息冗余,所以很有必要研究合适的降维算法以降低Gabor特征的维数.为了解决这个问题,提出了最优Gabor尺度和方向的选择算法.在这个算法中,把所有的样本和每一个Gabor核进行卷积,并对所有的卷积结果分别计算类内距离和类间距离.最后,通过计算类间距离和类内距离的比值选择比值最大的Gabor核就是对应的最优Gabor核.为了验证本文算法的有效性,分别在YALE、AR、FERET人脸数据库上进行实验,结果表明较大尺度和某些方向构成的Gabor核对应的特征具有较好的鉴别力. Because the fact that Gabor features are redundant and too high-dimensional, appropriate feature dimension reduction appears to he much more necessary. To address this problem, a novel optimal selection method of Gabor kernels' scales and orientation was proposed. In this method, all training samples were convolved with each Gabor kernel. Within-class distance and between-class distance calculation were performed on these convolution results, respectively. At last, the optimal Gabor kernel was selected based on the ratio of the within-class distance and the between-class distance, in which Gabor kernel corresponding to the largest ratio is the optimal one. To prove the advantages of the proposed method, extensive experiments were conducted on popular face databases such as YALE, AR, FERET. The experiment results show that the proposed method is effective and the features in the larger scales as well as the features in 135°, 180° and 225°orientations have more discriminative power.
作者 袁伟 李晓东
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2012年第7期570-576,共7页 JUSTC
基金 Supported by the National Science Foundation of China(61102040)
关键词 人脸识别 Gabor核 降维 face recognition Gabor kernel dimension reduction
  • 相关文献

参考文献17

  • 1Tan X Y, Chen S C. Face recognition from a single image per person: A survey[J]. Pattern Recognition, 2006,39:1 725-1 745.
  • 2Phillips P J, Flynn P J, Scruggs T, et al. Overview of the face recognition grand challenge [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005,1 : 947-954.
  • 3Zhao W, Chellappa R, Rosenfeld A, et al. Face recognitiom a literature survey [J]. Computing Surveys, 2003,35 (4) 399-458.
  • 4Turk M, Pentland A. Eigenfaces for recognition[J].Journal of Cognitive Neuroscience, 1991,3(1) : 71-86.
  • 5Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: Recognition usin class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 711-720.
  • 6Zhi R C, Ruan Q Q. Two-dimensional direct and weighted linear discriminative analysis for face recognition[J]. Neurocomputing, 2008, 71 (16-18):3 607-3 611.
  • 7Choi W P, Tse S H, Wong K W, et al. Simplified gabor wavelets for human face recognition[J]. Pattern Recognition, 2008,42(3)..1 186 1 199.
  • 8Shen L L, Michael F L B. Gabor wavelets and general discriminant analysis for face identification and verification[J]. Image and Vision Computing, 2007, 25(5) : 553-563.
  • 9Zheng Z L, Yang F, Tan W A, et al. Gabor feature- based face recognition using supervised locality preserving projection[J]. Signal Processing, 2007,87 :2 473-2 483.
  • 10Loris N, Dario M. Weighted sub-Gabor for face recognition [ J ]. Pattern Recognition Letters, 2007, 28(4) ..487-492.

二级参考文献21

  • 1Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003.
  • 2Phillips PJ,Syed HM,Rizvi A,Rauss PJ.The FERET evaluation methodology for face-recognition algorithms.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104.
  • 3Brunelli R,Poggio T.Face recognition:features vs.templates.IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1053.
  • 4Turk M,Pentland A.Face recognition using eigenfaces.In:Negahdaripour S,et al.,eds.Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.Maui:IEEE Computer Society Press,1991.586-591.
  • 5Belhumer P,Hespanha P,Kriegman D.Eigenfaecs vs fisherfaces:Recognition using class specific linear projection.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 6Porat M,Zeevi Y.The generalized Gabor scheme of image representation in biological and machine vision.IEEE Trans.on Pattern Analysis and Machine Intelligence,1988,10(4):452-468.
  • 7Wiskott L,Fellous JM,Kruger N,Malsburg C.Face recognition by elastic bunch graph matching.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):775-779.
  • 8Liu CJ,Wechsler H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.IEEE Trans.on Image Processing,2002,11(4):467-476.
  • 9Shan SG.Study on some key issuses in face recognition[Ph.D.Thesis].Beijing:Institute of Computing Technology,the Chinese Academy of Sciences,2004
  • 10Vapnik VN,Write; Zhang XG,Trans.The Nature of Statistical Learning Theory.Beijing:Tsinghua University Press,2000.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部