摘要
研究可压缩磁流体(MHD)方程组的弱解在三维有界区域上关于时间的全局行为.为了解决MHD方程组的这一问题,需要对磁场项、耦合项以及流体项进行估计.对非线性项(▽×M)×M的处理方式是受可压Navier-Stokes方程组的启发.利用Yong不等式、Hlder不等式以及Soblev不等式等对弱解进行能量估计.对绝热指数进行适当限制,证明了在有界外力作用下,总能量是有界的.
We consider the global behavior of weak solutions of the equations of compressible magnetohydrodynamic(MHD) flows in time in a bounded three-dimesion domain-arbitrary forces. To achieve our goal for the MHD problem, we also need to develop esti- mates to deal with the magnetic field and its coupling and interacting with the fluid variables. The nonlinear term (△↓ × M) )× M will be dealt with by the idea arising in compressible Navier-Stokes equations. We use Yong inequality, Holder inequality and Soblev ine-quality for energy estimate. Under certain restrictions imposed on the adiabatic constant,we proved that total energy of finite energy weak solution is still bounded when the external force is bounded.
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第4期651-656,共6页
Journal of Xiamen University:Natural Science
基金
中央高校基本科研业务费专项资金(11QZR18)
关键词
可压磁流体方程组
弱解
能量估计
compressible magnetohydrodynamic equations
weak solution
energy estimate