期刊文献+

一类带约束动态多目标优化问题的进化算法 被引量:3

Evolutionary algorithm for class of constrained dynamic multi-objective optimization problems
下载PDF
导出
摘要 动态多目标约束优化问题是一类NP-Hard问题,定义了动态环境下进化种群中个体的序值和个体的约束度,结合这两个定义给出了一种选择算子。在一种环境变化判断算子下给出了求解环境变量取值于正整数集+的一类带约束动态多目标优化问题的进化算法。通过几个典型的Benchmark函数对算法的性能进行了测试,其结果表明新算法能够较好地求出带约束动态多目标优化问题在不同环境下质量较好、分布较均匀的Pareto最优解集。 Dynamic multi-objective constrained optimization problem is a kind of NP-hard problem.The rank and the scalar constraint violation of the individual for evolution population under the dynamic environments are defined.Based on the two definitions,a new selection operator is presented.Based on an environment changing operator,a new dynamic constrained multi-objective optimization evolutionary algorithm,which is used to solve a class of constrained dynamic multi-objective optimization problems in which the environment variable is defined on the positive integer set,is given.The proposed algorithm has been tested on two constrained dynamic multi-objective optimization benchmark problems.The results obtained have been compared with the other algorithm.Simulations demonstrate the new algorithm can obtain good quality and uniformed distribution solution set in different environments for constrained dynamic multi-objective optimization problems.
出处 《计算机工程与应用》 CSCD 2012年第21期45-48,74,共5页 Computer Engineering and Applications
基金 陕西省教育厅科学研究计划项目(No.11JK0506)
关键词 约束动态多目标优化 进化算法 环境变化 PARETO最优解 constrained dynamic multi-objective optimization evolutionary algorithm environment changing Pareto convergence
  • 相关文献

参考文献12

  • 1Jin Y C, Branke J.Evolutionary optimization in uncertain environments--a survey[J].IEEE Transactions on Evolu- tionary Computation, 2005,9 (3) : 134-137.
  • 2王洪峰,汪定伟,杨圣祥.动态环境中的进化算法[J].控制与决策,2007,22(2):127-131. 被引量:18
  • 3窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 4Rohlfshagen P, Lehre P K, Yao X.Dynamic evolutionary optimization: an analysis of frequency and magnitude of change[C]//Pro of the 2009 Genetic and Evolutionary Com- putation Conference,2009: 1713-1720.
  • 5刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析[J].电子学报,2007,35(6):1118-1121. 被引量:22
  • 6Mei Y, Tang K, Yao X.Capacitated arc routing problem in uncertain environments[C]//Proc of the 2010 IEEE Congress on Evolutionary Computation(CEC2010),Bar- celona, Spain, 2010: 1400-1407.
  • 7Nguyen T, Yao X.Benchmarking and solving dynamic con- strained problems[C]//Proceedings of the IEEE Congress on Evolutionary Computation CEC2009.Trondheim, Nor- way: IEEE Press, 2009 : 690-697.
  • 8Soylu B,Koksalan M.A favorable weight-based evolution- ary algorithm for multiple criteria problems[J].IEEE Trans- actions on Evolutionary Computation, 2010, 14 (2) : 191-207.
  • 9刘淳安.解动态约束规划问题的差分进化算法[J].昆明理工大学学报(理工版),2010,35(6):114-118. 被引量:1
  • 10Leung Y, Wang Y.An orthogonal genetic algorithm with quantization for global numerical optimization[J].IEEE Transactions on Evolutionary Computation, 2001,5 ( 1 ) : 40-53.

二级参考文献60

  • 1窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 2吴亮红,王耀南,周少武,袁小芳.采用非固定多段映射罚函数的非线性约束优化差分进化算法[J].系统工程理论与实践,2007,27(3):128-133. 被引量:27
  • 3Yixin Chen, Benjamin W W. Calculus of variations in discrete space for constrained nonlinear dynamic optimization [ C ]. Proceedings of the 14th International Conference on Tools with Artificial Intelligence (ICTAI' 02), Piscatway, IEEE Press, 2002,1 - 8.
  • 4Chun - an Liu, Yuping Wang. New muhiobjective PSO algorithm for nonlinear constrained programming problems [ C ]. Proceedings of the 2007 International Conference on Intelligent Systems and Knowledge Engineering,2007,1439 - 1442.
  • 5Salman A, Engelbrecht A P, Omran M G H. Empirical analysis of self- adaptive differential evolution [ J ]. European Journal of Operational Research, 2007,183 (2) : 785 - 804.
  • 6Storn R, Price K. Differentinal evolution - a simple and efficient heuristic for global optimization over continuous space,Technical Report TR - 95 - 012 [ R]. Berkeley : Internatinal Computer Science Institute, 1995.
  • 7Brest J, Greiner S, Bosovic B, et al. Self - adapting control parameters in differential evolution : A comparative study on numerical benchmark problems [J]. IEEE Transactions on Evolutionary Computation ,2006,10 (6) : 646 -657.
  • 8Becerra R L, Coello C A C. Cultured differential evolution for constrained optimization [J].Computation Methods in Applied Mechanics and Engineering ,2006 , 195 (33/34/35/36) :4303 - 4322.
  • 9J. Branke, H. Schmeck. Designing evolutionary algorithms for dynamic optimization problems [ C ]. Proc. of the Theory and Application of Evolutionary Computation, Germany, Berlin, Springer - Verlag, 2002:239 - 262.
  • 10C Ronnewinkel,C O Wilke,T Marrtinetz.Genetic algorithms in time-dependent environments[ A ].L Kallel,B Naudts,A Rogers,et al.In Theoretical Aspects of Evolutionary Computing[C].Berlin:Springer-Verlag,2000.263-288.

共引文献52

同被引文献41

  • 1朱劲松,肖汝诚.基于定期检测与遗传算法的大跨度斜拉桥损伤识别[J].土木工程学报,2006,39(5):85-89. 被引量:16
  • 2王艳,廖明生,李德仁,魏子新,方正.利用长时间序列相干目标获取地面沉降场[J].地球物理学报,2007,50(2):598-604. 被引量:81
  • 3Fogel L J, Owens A J, Walsh M J through Simulation Evolution[M]. ley, 1966.
  • 4ArtificialIntelligence New York: John Wi- Goldberg D E, Smith R E. Non-stationaryFunction Opti- mization Using Genetic Algorithms with Dominance and Diploids[C]. Proc. of the 2nd Int Conf. on Genetic Algo- rithms, Grefenstette J J(Eds. ), 1987: 59-68.
  • 5Krishnakumar K. Micro-geneticAlgorithms for Stationary and Non-stationary Function Optimization[J]. SHE, In- telligent Control and Adaptive Systems, 1989, 289-296.
  • 6Marco F, Deb K, Amato P. Dynamic Multiobjective Opti- mization Problems: Test Cases, Approximation, and Ap- plications[C]. Proc. of the Evolutionary Multiobjective Optimization International Conference, Faro, Portugal, 2003: 311-326.
  • 7Deb K, Bhadkara U R N, Karthik S. Dynamic Nultiobjec- tive Optimization and Decision-making Using Modified NS- GA-II: A Case on Hydro-thermal Power Scheduling[C]. Proc. of the 4th International Conference on Evolutionary MultiCriterion Optimization, INCS 4403, Springer-Ver- lag, Matsushima, Japan, 2007: 803-817.
  • 8Iason H, David W. Dynamic Multiobjeetive Optimization with Evolutionary Algorithms: A Forward-looking Ap- proach[C]. Proc. of the GECCO'06, Washington USA, 2006 : 1201-1208.
  • 9Zhang Z H. MultiobjectiveOptimization Immune Algorithm in Dynamic Environment and Its Application to Greenhouse Control[J]. Applied Soft Computing, 2008: 959-971.
  • 10Amato P, Farina M. An Life-Inspired Evolutionary Algo- rithm for Dynamic Multiobjective Optimization Problems [J]. Advances in Soft Computing, 2005: 113-125.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部