期刊文献+

运用多项式曲线在多项式曲面上裁剪Bézier曲面 被引量:1

Trimming Bézier surfaces over polynomial surfaces with polynomial curves
下载PDF
导出
摘要 在多项式曲面的定义域上,以两多项式曲线及两直线段围成的简单区域作为裁剪区域,运用参数变换将该区域变换到标准正方形区域,以多项式开花为工具,将裁剪区域对应的子曲面片表示成Bézier曲面形式。对于参数平面上的复杂裁剪区域,则分割为若干简单区域来进行。该裁剪算法能处理形状较为复杂的曲面裁剪,方法对任意多项式曲面适用,而且能推广到有理情况。 Over the parametric domain of polynomial surface,trimming subdomain is surrounded with two polynomial curves and two lines,this domain is transformed into standard square by parameter transformation,and Bézier control points of the corresponding subpatch over the surface are evaluated via polonomial’s blossoming.The algorithm makes more choices for the shape of the subdomain and subpatch.And the method works for any polynomial surfaces and rational cases.
出处 《计算机工程与应用》 CSCD 2012年第21期201-204,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.11026076) 安徽大学博士科研经费项目(No.31190016)
关键词 多项式曲线曲面 简单区域 裁剪 参数变换 开花 polynomial curves and surfaces simple domain trimming parameter transformation blossoming
  • 相关文献

参考文献14

  • 1Goldman R N.Subdivision algorithms for B6zier trian- gles[J].Computer Aided Design, 1983,15 : 159-166.
  • 2Goldman R N, Filip D.Conversion from B6zier rectangles to B6zier triangles[J].Computer-Aided Design, 1987, 19: 25-27.
  • 3Hu S, Wang G, Jin T.Generalized subdivision of B6zier surfaces[J].Graphieal Models and Image Processing, 1996,58(3) :218-222.
  • 4冯结青,彭群生.Bézier曲面的函数复合及其应用(英文)[J].软件学报,1999,10(12):1316-1322. 被引量:5
  • 5Yang L, Zeng X.Trimming Bdzier surfaces on B6zier surfaces via blossoming[C]//Lecture Notes in Computer Science. Heidelberg: Springer, 2008,4975 : 578-584.
  • 6胡事民,孙家广,汪国昭.Bézier曲面的广义离散及应用[J].计算机学报,1999,22(3):290-295. 被引量:3
  • 7胡事民,孙家广,汪国昭.基于广义离散分解trimmed曲面[J].计算机学报,1999,22(3):296-301. 被引量:6
  • 8Lasser D.Tensor product B6zier surfaces on triangle B6zier surfaces[J].Computer Aided Geometric Design,2002, 19: 625-643.
  • 9杨联强,曾晓明.Bzier曲面的广义细分[J].计算机辅助设计与图形学学报,2009,21(4):549-553. 被引量:1
  • 10Farin G.Curves and surfaces in computer aided geometric design[M].5th ed.San Francisco: Morgan Kaufmann, 2001.

二级参考文献23

  • 1胡事民.两种Bézier曲面形式的转换及几何连续拼接[J].高校应用数学学报(A辑),1993,8(3):290-299. 被引量:2
  • 2胡事民,汪国昭,金通洸.矩形域上有理Bezier曲面的广义离散算法及其应用[J].计算机学报,1996,19(4):285-292. 被引量:4
  • 3Farin G.CAGD曲线与曲面[M].李双喜译.北京:科学出版社,2006.
  • 4Gallier J. Curves and surfaces in geometric modeling: theory and algorithms [M]. San Francisco: Morgan Kaufmann, 2000
  • 5Goldman R.金字塔算法--曲线曲面几何模型的动态编程处理[M].吴宗敏,刘剑平,曹沅,等译.北京:电子工业出版社,2004.
  • 6Hu S M, Wang G Z, Jin T J. Generalized subdivision of Bezier surfaces [J]. Graphical Models and Image Processing, 1996, 58(3): 228-222
  • 7Hu S M. Conversion of a triangular Bezier patch into three rectangular Bezier patches [J]. Computer Aided Geometric Design, 1996, 13(3): 219-226
  • 8Hu S M. Conversion between triangular and rectangular Bezier patches [J]. Computer Aided Geometric Design, 2001, 18(7): 667-671
  • 9Yang L Q, Zeng X M. Trimming Bezier surfaces on Bezier surfaces via blossoming [M] //Lecture Notes in Computer Science. Heidelberg: Springer, 2008, 4975:578-584
  • 10Ramshaw L. Blossoming: a connect-the-dots approach to splines [R]. Palo Alto: Systems Research Center, 1987

共引文献8

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部