期刊文献+

基于神经网络的机械加工工序能耗预测 被引量:7

Energy consumption prediction in machining procedure based on neural network
下载PDF
导出
摘要 针对工序级能耗难以用数学方法精确估算的问题,提出了一个基于神经网络的机械加工工序能耗预测方法。给出了输入变量及输出变量的选取及其归一化处理方法,进行了隐含层节点数和传递函数的选取。以各切削用量组合及其对应能源消耗的历史数据作为神经网络训练的样本集,建立切削用量组合方案输入和能源消耗输出间的非线性关系,从而对新的切削用量参数组合进行能耗值的预测。以某企业导叶片的粗铣加工为例,验证了该能耗预测方法的有效性。 To solve the problem that the energy consumption result of machining procedure can not be calculated accurately by mathematical method,the estimation method of energy consumption in machining procedure layer based on neural network is presented.The choice and unitary of input variables and output variables are illustrated.The node number of latent layer and transfer function are selected.The combination of cutting parameter and the corresponding history data of energy consumption are served as training data set,and the nonlinear mapping relation of the combination of cutting parameter with corresponding energy consumption is set up.Thus,energy consumption of the new combination of cutting parameter is estimated.The effectiveness of the prediction method is verified by the example of rough machining procedure of a guide blade in an enterprise.
作者 宫运启
出处 《计算机工程与应用》 CSCD 2012年第21期235-239,共5页 Computer Engineering and Applications
基金 哈尔滨商业大学博士科研启动基金资助
关键词 能耗预测 机械加工工序 神经网络 energy consumption prediction machining procedure neural network
  • 相关文献

参考文献8

  • 1Munoz A, Sheng EAn analytical approach for determin- ing the environmental impact of machining processes[J]. Journal of Materials Processing Technology, 1995, 53 (3/4) : 736-758.
  • 2陈杰,罗红波,赵武.基于人工神经网络方法的切削用量智能选择系统[J].工具技术,2003,37(10):17-19. 被引量:7
  • 3Abdullah K.Modeling of the cutting tool stresses in ma- chining of inconel 718 using artificial neural networks[J]. Expert Systems with Applications, 2009,36 (6) : 9645-9657.
  • 4包洋,李蓓智,杨建国.基于数据挖掘的工艺参数优化研究[J].微计算机信息,2006,22(09X):245-247. 被引量:9
  • 5Shahani A R, Setayeshi S, Nodamaie S A, et al.Predic- tion of influence parameters on the hot rolling process using finite element method and neural network[J].Jour- nal of Materials Processing Technology, 2009, 209 (4) : 1920-1935.
  • 6Azadeh A, Ghaderi S F, Sohrabkhani S.A simulated-based neural network algorithm for forecasting electrical ener- gy consumption in Iran[J].Energy Policy, 2008,36(7): 2637-2644.
  • 7刘飞,徐宗俊,但斌,等.机械加:亡系统能量特性及其应用[M].北京:机械工业出版社,1995.
  • 8Zhou C C, Yin G F, Hu X B.Multi-objective optimiza- tion of material selection for sustainable products: artifi- cial neural networks and genetic algorithm approach[J]. Materials & Design, 2009,30 (4) : 1209 - 1215.

二级参考文献5

共引文献14

同被引文献63

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部