期刊文献+

飞机换热器故障诊断仿真研究 被引量:2

Research on Simulation of Fault diagnosis of Aircraft Heat Exchangers
下载PDF
导出
摘要 为准确判定飞机环境控制系统关键部件换热器的故障发生情况,针对飞机在运行状态下进行实验的难度,应用计算机仿真技术,为准确进行故障诊断。在建立换热器动态模型的基础上,为克服普通最小二乘法,参数估计是静态,使故障诊断延迟大的缺点,提出采用递推增广最小二乘法对换热器物理参数进行辨识,主要分析单一故障时,换热器物理参数变动情况进行仿真。结果表明,递推增广最小二乘法可以准确辨识换热器物理参数变动,实现换热器故障诊断,验证了方法的有效性和正确性,同时得到了换热器物理参数与故障模式的对应关系,对实际工程中换热器故障诊断有一定的指导作用。 For the purpose of ascertaining fault changes and the practical experiment difficulty considered in this paper,in order to accurately determine the key components of the aircraft environmental control system (AECS) fail- ure occurrence of heat exchanger, a simulation technology of microcomputer is applied. Dynamic simulation of a trian- gle fin heat exchanger utilized in AECS was performed. To overcome the ordinary least squares method, parameter es- timation is static, a big disadvantage of delay fault diagnosis, and the physical parameters of heat exchanger have been identified using the Recursive Extended Least Squares method. Then the behaviors of the heat exchanger with single/double faults were simulated and changes of the physical parameters from normal to fault conditions were ana- lyzed. It is indicated that the Recursive Extended Least Squares method is feasible for fault diagnosis. The relation- ship between the changes of physical parameters and the fault modes provides a useful approach to define the faults and can be extend to heat exchangers applied in practical engineering.
出处 《计算机仿真》 CSCD 北大核心 2012年第7期65-69,共5页 Computer Simulation
基金 北航"凡舟"科技青年基金(20100509)
关键词 换热器 故障诊断 递推增广最小二乘法 物理参数 故障模式 Heat exchanger Fault diagnosis Recursive extended least squares Physical parameter Fault mode
  • 相关文献

参考文献6

二级参考文献130

  • 1周东华,孙优贤,席裕庚,张钟俊.一类非线性系统参数偏差型故障的实时检测与诊断[J].自动化学报,1993,19(2):184-189. 被引量:26
  • 2孙卫祥,陈进,伍星,董广明,宁佐贵,王东升,王雄祥.基于信息融合的支撑座早期松动故障诊断[J].上海交通大学学报,2006,40(2):239-242. 被引量:13
  • 3邵晨曦,张俊涛,范金锋,白方周.基于定性定量知识的故障诊断[J].计算机工程,2006,32(6):189-191. 被引量:3
  • 4谭阳红,叶佳卓.模拟电路故障诊断的小波方法[J].电子与信息学报,2006,28(9):1748-1751. 被引量:20
  • 5王洪江,孙保民,田进步.定性仿真在锅炉状态监控和故障诊断中的应用[J].工程热物理学报,2007,28(1):12-14. 被引量:4
  • 6Rajakarunakaran S, Venkat P, Devaraj D, Surya P R K. Artificial neural network approach for fault detection in LPG transfer system. Applied Soft Computing, 2008, 8(1): 740 - 748
  • 7Quteishat A, Lim C P. A modified fuzzy min-max neural network with rule extraction and its application to fault detection and classification. Applied Soft Computing, 2008, S(2): 985-995
  • 8Dong L X, Xiao D M, Liang Y S, Liu Y L. Rough set and fuzzy wavelet neural network integrated with least square weighted fusion algorithm based fault diagnosis research for power transformers. Electric Power Systems Research, 2008, 78(1): 129-136
  • 9Thukaram D, Khincha H P, Vijaynarasimha H P. Artificial neural network and support vector machine approach for locating faults in radial distribution systems. IEEE Transactions on Power Delivery, 2005, 20(2): 710-721
  • 10Jack L B, Nandi A K. Support vector machines for detection and characterization of rolling element bearing faults. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2001, 215(9): 1065-1074

共引文献315

同被引文献16

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部