期刊文献+

改进暂态混沌神经网络在信道分配中的应用

Application in Frequency Assignment Based on Improved Transiant Chaotic Neural Network
下载PDF
导出
摘要 研究信道分配优化问题,由于传统迭代过程中存在收敛率低,易于陷入局部最优解等缺点。为改善算法收敛速率和信道分配效果,采用改进的暂态混沌神经网络(MTCNN)。在混沌神经网络的动态特性中采用时变增益,在退火过程中采取分段的退火机制,使得混沌搜索阶段保持较长时间的混沌态,利于进行全局搜索,稳定收敛阶段能够迅速收敛于最优解,提高收敛率。仿真结果表明,改进后的算法能很好地解决信道分配问题。和暂态混沌神经网络及仅分段的暂态神经网络相比,最优解率得到很大的提高,网络收敛速度提高了12%以上。最后,给出了模型参数对网络性能影响的一些结论。 Because of its good dynamic characteristic, Chaotic Neural Network (CNN) is applied to solve the Channel Asignment Problem(CAP). But the convergence rate is low and easily fall into local optimal solution. In or- der to improve the convergence rate and the result of channel allocation, this paper adopted the improved transient chaotic neural network ( MTCNN ). Time varying gain was applied in the chaotic neural network dynamic character- istics, and two-stage annealing mechanism was adopted in the annealing process of algorithm, so chaotic state can keep longer in the chaotic search stage, in favour of global search, in the stable and convergent stage it can quickly converge to the optimal solution. The convergence rate was improved. The simulation results show that, the improved algorithm can well solve the channel assignment problem. Compared with the transient chaotic neural network and the only two-stage annealing applied situation, the optimal solution rate has been greatly improved, and the network con- vergence speed is accelerated by more than 12%. Finally, some conclusions about the effect of parameters on the net- work model were summed up.
出处 《计算机仿真》 CSCD 北大核心 2012年第7期155-158,共4页 Computer Simulation
基金 中国移动新疆分公司研究发展基金项目
关键词 改进混沌神经网络 时变增益 分段退火 信道分配 MTCNN Time-varying gain Two-stage annealing Channel assignment
  • 相关文献

参考文献16

  • 1N Funabiki and Y Takefuji. A Neural Network Parallel Algorithm for Channel Assignment Problems in Cellular Radio Networks[ J]. IEEE Trans Veh Technol, 1992 ,41 (4) :430-437.
  • 2Zhang Yiyeng, He Zhenya. Cellular Channel Assignment UsingTransient Chaotic Neural Network with Self-organizing Pattern For- mation initializing[J]. IEEE. 2001:616-619.
  • 3D Kunz. Channel assignment for cellular radio network using neu- ral networks[J]. IEEE Trans. On Veh. Teehnol, 1991,40( 1 ) : 188-193.
  • 4徐俊杰,忻展红.基于微正则退火的频率分配方法[J].北京邮电大学学报,2007,30(2):67-70. 被引量:22
  • 5仲向远,金敏,仲向前,陈毅.基于自适应遗传算法的蜂窝网络信道分配[J].计算机工程,2010,36(17):189-191. 被引量:15
  • 6L Chen and KAihara. Chaotic simulated annealing by a neural net- work model with transient chaos [ J ]. Neural Networks, 1995,8 (6) : 915-930.
  • 7Lu Hongtao and C Van Leeuwen. Synchronization of chaotic neu- ral networks via output or state coupling [ J ]. Chaos, 2006,30 (1) :166-176.
  • 8Wang Lipo, Li Sa, Tian Fuyu and Fu Xiuju. A Noisy Chaotic Neural Network for Solving Combinatorial Optimization Problems: Stochastic Chaotic Simulated Annealing[ J]. IEEE,2004,34(5 ) : 2119-2125.
  • 9李谦.混沌神经网络在组合优化问题中的研究和应用[D].北京工业大学,2007:8-32.
  • 10Kim J S, et al. Cellular radio channel assignment using a modi- fied Hopfield network [ J]. IEEE Trans. on Veh. TechnoI,1997, 46(4) : 957-967.

二级参考文献57

  • 1党安红,张敏,朱世华,汤俊雄.一种新的优化动态信道分配策略及建模分析[J].电子学报,2004,32(7):1152-1155. 被引量:7
  • 2许良凤.蜂窝移动通信中基于遗传退火的固定频率分配[J].安徽农业大学学报,2004,31(4):508-510. 被引量:5
  • 3徐京皓,曹达仲.移动通信系统中信道分配的方案及其算法[J].移动通信,1995,19(4):30-35. 被引量:2
  • 4庄镇泉,王熙法,王东生.神经网络与神经计算机[J].电子技术应用,1990,16(4):39-43. 被引量:28
  • 5TOKUDA I, NAGASHIMA T, AIHARA K. Global bifurcation structure of chaotic neural networks and its application to traveling salesman problem [J].Neural Networks, 1997, 10(9): 1673-1690.
  • 6CHEN L, AIHARA K. Simulated annealing by a neural network model with transient chaos[J]. Neural Networks, 1995, 8 (6): 915-930.
  • 7SOLO R V, PRIDA L de La. Controlling chaos in discrete neural network [J]. Phys Lett A, 1995, 199(1): 65-69.
  • 8FREEMAN W J. Simulation of chaotic EEG patterns with a dynamic model of the olfactory system [J]. Biological Cybernetics, 1987, 56: 139-150.
  • 9YAO Y, FREEMAN W J. Model of biological pattern recognition with spatial chaotic dynamics [J].Neural Networks,1990, 3 (2) :153-170.
  • 10WOLF A, SWLFT J B, SWINNEY H L,et al. Determining Lyapunov exponents from a time series[J].Physica D,1985, 16(3):285-317.

共引文献100

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部