期刊文献+

采用树状小波变换的医学图像融合方法及实现 被引量:1

MEDICAL IMAGE FUSION ALGORITHM USING TREE-STRUCTURE WAVELET TRANSFORM AND ITS IMPLEMENTATION
下载PDF
导出
摘要 提出基于树状小波变换的医学图像融合方法,所提出的算法能够在一定的能量准则下对图像进行自适应树状小波分解,能够根据图像的子图能量决定图像的变换。通过实验仿真及客观的图像融合评估准则,实验结果表明了树状小波分解能够得到比塔形小波分解更好的融合效果,信噪比提高了很多,均方差明显减少,且该算法不但保留了小波变换算法的多分辨率特性,而且充分保留了图像中的细节信息,减少了融合的复杂度。 An algorithm for medical image fusion based on tree-structure wavelet transform is proposed. Following some special energy criterion, it can implement adaptive tree-structure wavelet decomposition on image and can determine image transform according to the subimage energy of the image. The algorithm is simulated through experiment and assessed based on objective image fusion criteria. Experimental results show that the tree-structure wavelet decomposition can achieve better fusion outcome than that of the pyramid wavelet decomposition, the signal-to-noise ratio has improved a lot, and the mean-square deviation reduces significantly. The proposed algorithm not only retains the multi-resolution characteristics of the wavelet, but also fully retains the details in the image, and reduces the complexity of fusion.
作者 朱霞
出处 《计算机应用与软件》 CSCD 北大核心 2012年第7期254-256,300,共4页 Computer Applications and Software
基金 淮安市科技计划项目(SN1045) 淮安市科技局项目(HAG09052)
关键词 图像融合 小波变换 树状小波 Image fusion Wavelet transform Tree-structure wavelet
  • 相关文献

参考文献5

二级参考文献24

  • 1[1]Toet A. Hierarchial image fusion. Machine Vision and Applications,1990,3(1): 1—11
  • 2[2]Toet A. Multiscale contrast enhancement with application to image fusion.Optical Engineering,1992,31(5): 1026—1031
  • 3[3]Yocky D A. Image merging and data fusion by means of the discrete two-dimensional wavelet transform. Journal of Optical Sciety of America, A, 1995,12(9): 1834—1841
  • 4[4]Nunez J,Otazu X,Fors O,et al. Multiresolution-based image fusion with additive wavelet decomposition.IEEE Transactions on Geoscience and Remote Sensing,1999,37(3): 1204—1211
  • 5[5]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7): 674—693
  • 6[6]Mallat S G. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998, 302—310
  • 7[7]Campbell F W, Robson J.Application of Fourier analysis to the visibility of gratings.Journal of Physiology,1968,197: 551—556
  • 8徐佩霞,小波分析与应用实例,1996年
  • 9Thomas C Stubbings,Stavri G Nikolov,Herbert Hutter.Fusion of 2-D SIMS Images Using the Wavelet Transform[J].2000,133:273~278
  • 10David W Townsend,Simon R Cherry.Combining anatomy and function:the Path to true image fusion[M].Eur.Radiol.2001:1968~1974

共引文献144

同被引文献14

  • 1Liao L D,Lin C T,McDowell K.et al.Biosensor technologies for augmented brain-computer interfaces in the next decades[J].Proceedings of the IEEE,2012,100:1553-1566.
  • 2Wolpaw J R,Birbaumer N,Heetderks W J,et al.Brain-computer interface technology:A review of the first international meeting[J].IEEE Transactions on Rehabilitation Engineering,2000,8 (2):222-225.
  • 3Isabella Gonzalez,Timeer Amin,Reed Jones,Reed Jones.Characterization of EEG Signals from NeuroSky MindSet Device[J/OL].http://cnx.org/content/col11392/1.1/2011-12.
  • 4M Murugappan,M Rizon,R Nagarajan,S Yaacob.Inferring of human emotional states using multichannel EEG[J].European Journal of Scientific Research,2010,48(2):281-299.
  • 5Arnaud Delorme,Scott Makeig.The EEGLAB Tutorial[J/OL].2010.7 http://sccn.ucsd.edu/wiki/EEGLAB_TUTORI-AL_OUTLINE/2010-07.
  • 6Liu ChunLin.A Tutorial of the Wavelet Transform[J/OL].http://disp.ee:ntu.edu.tw/tutorial/WaveletTutorial.pdf/2010-02.
  • 7Dipti Upadhyay.Classification of EEG signals under different mental tasks using wavelet transform and neural network with one step secant algorithm[J].International Journal of Scientific Engineering and Technology,2013,2(4):256-259.
  • 8Vigneshwari C,Vimala V,SVaira Vignesh,et al.Analysis of finger movements using EEG signal[J].International Journal of Emerging Technology and Advanced Engineering,2013,3(1):583-588.
  • 9Yuan Yang,Sylvain Chevallier,Joe Wiart,Isabelle Bloch.Time-frequency selection in two bipolar channels for improving the classfication of motor imagery EEG[C]// The proceeding of 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'12),San Diego:United States (2012).
  • 10宾光宇,张雅静,高小榕.相位同步方法用于稳态视觉诱发电位的测量[J].清华大学学报(自然科学版),2008,48(9):1507-1510. 被引量:2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部