摘要
文章基于流固耦合Morison公式和直接积分法,将待求解时刻的结构速度在上步速度处展开为Taylor级数并取至一阶精度,由此可以通过上步速度及加速度预估结构的下一步速度,从而实现对Morison波浪力的校正,避免了时间步长内的反复迭代。以Wilson-θ法为例,给出了多自由度结构在波浪作用下考虑流固耦合时动力响应的积分格式。算例分析表明,与不考虑流固耦合效应的结果相比,预估校正法计算的结构瞬态响应变小,特别是加速度和速度响应的减小更为明显,而稳态响应则逐渐趋于一致。
Abstract:Based on Morison equation and direct integration method, the current structural velocity is expand- ed in terms of the previous step one and truncated with first order precision. Then, one can predict the un- known structural velocity by the previous velocity and acceleration and corrects the wave force from Mori- son equation, so that the iterative procedure in the process of time integration can be avoided. And the in- tegration procedure based on Wlison-O method, to solve the dynamic response of multi-degree structures subjected to waves, is presented. The results indicate that the transient responses by first order prediction correction method would decrease compared with ones without considering fluid-structure interaction. In addition, the trend for velocity and acceleration is more obvious. And, for those two methods the stable re- sponses match well.
出处
《船舶力学》
EI
北大核心
2012年第7期781-786,共6页
Journal of Ship Mechanics
基金
国家自然科学基金委创新研究群体(编号:50621062)
关键词
流固耦合
Morison公式
直接积分法
预估校正
波浪动力响应
fluid-structure interaction
Morison equation
direct integration method
prediction correction
dynamic wave response