期刊文献+

杜梨类钙调磷酸酶B亚基蛋白PbCBL10基因的克隆和表达特性研究 被引量:9

Cloning and expression characteristics of a Calcineurin B-like protein gene(PbCBL10) from Pyrus betulaefolia
下载PDF
导出
摘要 【目的】为了探明杜梨类钙调磷酸酶B亚基蛋白(CalcineurinB—likeprotein,CBL)基因的序列特征和表达特点,【方法】以杜梨幼苗为试材,运用同源克隆和半定量RT—PCR对PbCBLIO基因进行克隆和表达分析。【结果】结果表明.PbCBLIO基因编码区cDNA长度为801bp,编码的多肽由266个氨基酸组成。该多肽预测的等电点为4.56,估计的相对分子质量为30.45ku。其对应基因组DNA序列长1983bp,包括9个外显子和8个内含子。通过PSORT进行亚细胞定位分析发现PbCBLl0蛋白位于质膜上的几率最大。PbCBLIO基因编码的多肽具有4个钙离子结合域EF手形结构和1个钙调磷酸酶A亚基结合位点。PbCBLl0与番茄S1CBLIO(NP_001239045)和拟南芥AtCBLl0(NP_195026)蛋白间的同源性较高,分别为82%和77%,并与AtCBL10亲缘关系最近。PbCBL10基因在杜梨幼苗根、茎和叶片中均为诱导型表达,50~200mmol·L^(-1)CaCl2、20μmol·L^(-1)ABA、100mmol·L^(-1)NaCl、10%(w/v)PEG6000或180mmol·L^(-1)甘露醇处理后其表达量明显上调。【结论】PbCBLIO基因具备植物CBL基因家族的固有特征,能够响应胞内钙浓度变化,对ABA、盐碱、干旱和渗透胁迫均存在转录响应。 [Objective] The objective of this study was to illuminate sequence features and expression characteristics of CBL gene family in birch-leaf pear (Pyrus betulaefolia Bunge). [Method] The fulllength eDNA and DNA sequences of a CBL gene were cloned from birch-leaf pear seedlings by reverse transcription polymerase chain reaction (RT-PCR), rapid amplification of eDNA ends (RACE) and PCR methods. Its expression patterns under different stresses were analyzed by semi-quantitative RT-PCR using cross-introns primers. [Result] The results showed that PbCBLIO eDNA sequence contained an 801 bp length coding region which encoded 266 amino acid residues. PbCBLIO predicted isoeleetric point and relative molecular mass were 4.56 and 30.45 ku, respectively. PbCBLIO genomic DNA sequence length was 1 983 bp which consisted of 9 exons (1-72, 189-363, 504-587,731-791, 1156-1262, 1363- 1420, 1551-1624, 1709-1824, 1930-1983 bp) and 8 introns (73-188, 364-503, 588-730, 792- 1155, 1263-1362, 1421-1550, 1625-1708, 1825-1929 bp). Subcellular localization result indicated that PbCBL10 protein was most probability localized in plasma membrane through the PSORT software analysis. PbCBL10 deduced polypeptide had four EF-hand structure domain (101-112, 135-146, 173- 184 and 217-228 amino acids) which was absolutely necessary for calcium-binding and one ealeineurin A subunit binding sites (196-214 amino acids). Homology analysis exhibited that it had the highest similarity with tomato S1CBL10 (NP_001239045) and Arabidopsis AtCBL10 (NP_195026) which were 82% and 77%, respectively. Furthermore, PbCBL10 and AtCBL10 belonged to the same branch in the CBL phylogenetic tree. PbCBLIO gene expression was inducible and its transcription abundances climbed up quickly after 50 to 200 mmol·L^(-1) CaC12, 20 μmol·L^(-1)ABA, 100 mmol. L^(-1) NaC1, 10% (w/v) PEG6000 or 180 mmol·L^(-1) mannitol treatments. [Conclusion] The studies suggested that Pb CBLIO gene has the inherent characteristics of the CBL gene family in plants, which can respond to changes of intracellular calcium concentration. Furthermore, PbCBL10 transcription was response to ABA, salt, drought and osmotic stresses.
出处 《果树学报》 CAS CSCD 北大核心 2012年第4期550-556,共7页 Journal of Fruit Science
基金 国家自然科学基金(31101529) 江苏省农业科技自主创新资金(CX(11)4050)
关键词 杜梨 类钙调磷酸酶B亚基蛋白 基因克隆 表达特性 Pyrus betulaefolia Bunge Calcineurin B-like protein Gene cloning Expression characteristics
  • 相关文献

参考文献22

  • 1WEINL S, KUDLA J. The CBL-CIPK Ca2+-decoding signaling net- work: function and perspectives[J]. New Phytologist, 2009, 184(3): 517-525.
  • 2LUAN S. The CBL-CIPK network in plant calcium signaling [J]. Trends in Plant Science, 2009, 14(1 ): 37-42.
  • 3KIM K N, CHEONG Y H, GUPTA R, LUAN S. Interaction speci- ficity of Arabidopsis calcineurin B-like calcium sensors and their target kinases[J]. Plant Physiology, 2000, 124(4): 1844-1853.
  • 4BATISTIC O,KUDLA J. Integration and channeling of calcium sig- naling through the CBL calcium sensor/CIPK protein kinase network [J]. Planta, 2004, 219(6): 915-924.
  • 5GONG D M, GUO Y, SCHUMAKER K S, ZHU J K. The SOS3 fami- ly of calcium sensors and SOS2 family of protein kinases in Ara- bidopsis[J]. Plant Physiology, 2004, 134(3): 919-926.
  • 6KOLUKISAOGLU U, WEINL S, BLAZEVIC D, BATISTIC O, KUDLA J. Calcium sensors and their interacting protein kinases: Genomics of the Arabidopsis and rice CBL-CIPK signaling networks [J]. Plant Physiology, 2004, 134(1 ): 43-58.
  • 7ZHANG H, YIN W, XIA X. Calcineurin B-Like family in Populus: comparative genome analysis and expression pattern under cold, drought and salt stress treatment[J]. Plant Growth Regulation, 2008, 56(2): 129-140.
  • 8COUTURIER J,MONTANINI B, MARTIN F, BRUN A, BLAUDEZ D, CHALOT M. The expanded family of ammonium transporters in the perennial poplar plant[J]. New Phytologist, 2007, 174( 1 ): 137- 150.
  • 9李慧,丛郁,常有宏,蔺经,盛宝龙.杜梨CPI基因的克隆、序列分析及表达[J].江苏农业学报,2011,27(5):1070-1077. 被引量:8
  • 10ISHITANI M-,-LIU J, HALFTER U, KIM C S, SHI W, ZHU J K. SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding[J]. The Plant Cell, 2000, 12 (9): 1667-1677.

二级参考文献25

  • 1OHTSUBO S, KOBAYASHI H, NORO W, et al. Molecular cloning and characterization of oryzacystatin-ill, a novel member of phytocystatin in rice ( Oryza sativa L. japonica) [ J ]. Journal of Agricultural and Food Chemistry, 2005, 53 (13) : 5218-5224.
  • 2MARTINEZ M, ABRAHAM Z, GAMBARDELLA M, et al. The strawberry gene Cyfl encodes a phytocystatin with antifungal properties [ Jl. Journal of Experimental Botany, 2005,56: 1821-1829.
  • 3SHYU D J H, CHYAN C, TZEN J T C, et al. Molecular cloning, expression, and functional characterization of a cystatin from pineapple stem [ J]. Biosencice, Biotechnology, and Biochemistry, 2004, 68(8): 1681-1689.
  • 4ELLIS D R, TAYLOR K C. Cloning of a zinc-binding cysteine proteinase inhibitor in citrus vascular tissue [ J]. Journal of the American Society for Horticultural Science, 2004, 129 (5) : 615-623.
  • 5YOZA K, NAKAMURA S, YAGUCHI M, et al. Molecular cloning and functional expression of cDNA encoding a cysteine proteinase inhibitor, cystatin, from Job's tears (Coix lacryma-jobi L. vat. Ma-yuen stapf) [J]. Bioscience, Biotechnology, and Biochemistry,2002,66(10) : 2287-2291.
  • 6KOUZUMA Y, TSUKIGATA K, INANAGA H, et al. Molecular cloning and functional expression of cDNA encoding the cysteine proteinase inhibitor Sca from sunflower seeds [J]. Bioscience, Biotechnology, and Biochemistry, 2001,65(4) : 969-972.
  • 7LIMA C A, SASAKI S D, TANAKA A S. Bmeystatin, a cysteine proteinase inhibitor characterized from the tick Boophilus microplus [J ]. Biochemical and Biophysical Research Communications, 2006, 347 ( l ) : 44-50.
  • 8KURODA M, KIYOSAKI T, MATSUMOTO 1, et al. Molecular cloning, characterization, and expression of wheat cystatins [ J ]. Bioscience, Biotechnology, and Biochemistry, 2001, 65( 1 ) : 22-28.
  • 9KOUZUMA Y, INANAGA H, DOI-KAWANO K, et al. Molecular cloning and functional expression of cDNA encoding the cysteine proteinase inhibitor with three cystatin domains from sunflower seeds [J]. Journal of Biochemistry, 2000,128(2) : 161-166.
  • 10LEI J J, YANG W J, YUAN S H, et al. Study on transformation of cysteine proteinase inhibitor gene into cabbage ( Brassica oleracea var. capitata L. ) [J]. Acta Horticulturae, 2006, 706: 231-238.

共引文献7

同被引文献92

  • 1郭文芳,刘德春,杨莉,庄霞,张涓涓,王书胜,刘勇.柑橘抗逆基因NAC83的克隆与表达分析[J].园艺学报,2015,42(3):445-454. 被引量:12
  • 2金松南,崔东根,周广芳.喷施KNO_3对新高梨实生苗硝酸还原酶活性和氮素积累的影响[J].果树学报,2005,22(4):315-318. 被引量:12
  • 3郭安源,朱其慧,陈新,罗静初.GSDS:基因结构显示系统[J].遗传,2007,29(8):1023-1026. 被引量:196
  • 4BATISTIC O, KUDLA J. Integration and channeling of calciumsignaling through the CBL calcium sensor/ CIPK protein kinasenetwork [J]. Planta, 2004, 219(6): 915-924.
  • 5REDDY V S, REDDY A S. Proteomics of calcium-signaling com-ponents in plants [J]. Phytochemistry, 2004, 65(12): 1745-1776.
  • 6ALBRECHT V, RITZ O, LINDER S, et al. The NAF domain de-fines a novel protein-protein interaction module conserved in Ca2+ -regulated kinases [J]. European Molecular Biology OrganizationJournal, 2001, 20(5):1051-1063.
  • 7GUO Y, HALFTER U, Zhu J K, et al. Molecular characterizationof functional domains in the protein kinase SOS2 that is requiredfor plant salt tolerance [J]. Plant Cell, 2001, 13 (6): 1383-1400.
  • 8GONG D, GUO Y, Zhu J K, et al. Biochemical characterizationof the Arabidopsis protein kinase SOS2 that functions in salt toler-ance [J]. Plant Physiology, 2002, 130(1): 256-264.
  • 9GONG D, GUO Y, SCHUMAKER K S, et al. The SOS3 family ofcalcium sensors and SOS2 family of protein kinases in Arabidopsis[J]. Plant Physiology, 2004 , 134(3) : 919-926.
  • 10KOLUKISAOGLU U, WEINL S, BLAZEVIC D, et al. Calciumsensors and their interacting protein kinases: Genomics of the Ara-bidopsis and rice CBL-CIPK signaling networks [J]. Plant Physi-ology, 2004, 134 (1) : 43-58.

引证文献9

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部