期刊文献+

基于多属性决策的气动隐身多目标优化 被引量:12

Multi-objective Aerodynamic and Stealthy Performance Optimization Based on Multi-attribute Decision Making
下载PDF
导出
摘要 针对多目标优化结果排序与选择的多属性决策(Multi-attribute decision making,MADM)问题,将多目标优化与MADM相结合,提出基于MADM的多目标优化方法,并将该方法应用于跨声速前掠翼(Forward-swept wing,FSW)气动隐身多目标优化中,优化结果提高了跨声速FSW的气动和隐身性能。采用类别形状函数变换法(Class-shape function transformation,CST)方法对翼型几何外形进行描述,实现FSW气动和隐身多学科优化设计模型的参数化描述。建立基于N-S方程的计算流体力学方法的FSW气动分析模型和基于矩量法的计算电磁学方法的FSW隐身分析模型。将Pareto多目标遗传算法得到的Pareto非劣解集构成MADM矩阵,采用基于模糊熵权的改进的逼近理想解的排序法(Modified technique for order preference by similarity to ideal solution,M-TOPSIS)方案评价方法进行Pareto非劣解排序,最终确定最佳的Pareto非劣解。研究结果验证了所提出方法的有效性,为多目标优化问题提供了一种新的解决途径。 In view of multi-attribute decision making(MADM) problems for ranking and selecting of multi-objective optimization results, the multi-objective optimization method based on MADM is proposed by combining the multi-objective optimization with MADM. The multi-objective aerodynamic and stealthy performance of transonic forward-swept wing(FSW) is solved by the proposed method, which can improve the aerodynamic and stealthy performance of transonic FSW effectively. The class-shape function transformation(CST) method is used to describe the parameterized airfoil geometry. The parameterized models for aerodynamic and stealthy performance of FSW are constructed. The aerodynamic analysis model of FSW is constructed by computational fluid dynamics method based on N-S equations. The stealthy performance analysis model of FSW is constructed by computational electromagnetics method based method of moments, The MADM decision matrix is constructed by the Pareto optimal solutions set solved from Pareto multi-objective genetic algorithm, the modified technique for order preference by similarity to ideal solution(M-TOPSIS) approach based on fuzzy entropy weight is employed to rank the Pareto optimal solutions and ultimately to identify the best Pareto solution. The results of the investigation show that the present method is effective, and a new solving approach is provided to the multi-objective optimization problem.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第13期132-140,共9页 Journal of Mechanical Engineering
基金 国家自然科学基金资助项目(50875024)
关键词 多属性决策 多目标优化 模糊熵权 前掠翼 Pareto遗传算法 Multi-attribute decision making Multi-objective optimization Fuzzy entropy weight Forward swept wing (FSW) Pareto genetic algorithm
  • 相关文献

参考文献12

  • 1李学斌,甘霖.船舶概念设计多目标优化和多属性决策研究[J].中国船舶研究,2008,3(3):14-17.
  • 2朱孙科,马大为,于存贵,乐贵高.多管火箭炮定向管的多目标优化及多属性决策研究[J].兵工学报,2010,31(11):1413-1417. 被引量:11
  • 3WANG Tienchin,CHANG Tsunghan.Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment[J].Expert Systems with Applications,2007,33:870-880.
  • 4REN Lifeng,ZHANG Yanqiong,WANG Yiren,et al.Comparative analysis of a novel M-TOPSIS and TOPSIS[J].Applied Mathematics Research Express,2007,17:1-10.
  • 5HICKS R M,HENNE P A.Wing design by numerical optimization[J].Journal of Aircraft,1978,15(7):407-413.
  • 6SOBIECZKY H.Parametric airfoils and wings[J].Note on Numerical Fluid Mechanics,1998,68:71-88.
  • 7KULFAN B M,BUSSOLETTI J E."Fundamental"parametric geometry representation for aircraft component shapes[C]// 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,September 6-8,2006,Portsmouth,Virginia.AIAA,2006,6948:1-45.
  • 8KULFAN B M.A universal parametric geometry representation method-"CST"[C]//45th AIAA Aerospace Science Meeting and Exhibit,January 8-11,2007,Reno,Nevada.AIAA,2007,62:1-35.
  • 9KULFAN B M.Recent extension and application of the "CST" universal parametric geometry representation method[C]//7th AIAA Aviation Technology,Integration and Operations Conference,September 18-20,2007,Belfast,northern Ireland.AIAA,2007,7709:1-32.
  • 10KULFAN B M.Universal parametric geometry representation method[J].Journal of Aircraft,2008,45(I):142-158.

二级参考文献1

共引文献10

同被引文献139

引证文献12

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部