期刊文献+

利用方向角信息辅助雷达目标跟踪 被引量:3

Aspect angle-aided tracking for radar targets
下载PDF
导出
摘要 传统雷达仅能提供目标的方位和距离量测,由于可利用的信息相对较少,跟踪精度很难进一步提高。利用现代雷达的高分辨探测能力,提出了一种基于距离像识别信息辅助目标跟踪的模型,并结合求根不敏卡尔曼滤波技术得到了一种高性能跟踪算法。该算法根据距离像识别结果得到目标方向角的测量,进而通过增加观测量的维数来提高目标的跟踪能力。不同条件下的仿真结果表明,利用方向角信息辅助的跟踪算法收敛速度快,跟踪精度高,且复杂度与传统算法相当。 In traditional radar target tracking, only azimuth and range measurement data are used, and the tracking precision can not be further improved because of insufficient target information. For this problem, utili- zing the ability of high resolution sensing of modern radar, a high-performance target tracking model and imple mentation algorithm is proposed by integrating the square-root unscented Kalman filter (SRUKF). The algo- rithm is based on target's aspect angle (referred to as feature information), which is a derived measurement from a high range resolution profile (HRRP) recognition. The performance improvement of tracking comes from this extra feature information, which is inherently related with target motion state. Simulation results show that the presented method has fast convergence speed, high tracking precision and low computational cost compared with the traditional one.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2012年第7期1350-1354,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(61002022)资助课题
关键词 特征辅助跟踪 方向角 求根不敏卡尔曼滤波 跟踪误差下限 feature-aided tracking (FAT) aspect angle square-root unscented Kalman filter (SRUKF) posterior Cramer-Rao bounds (PCRB)
  • 相关文献

参考文献15

  • 1Lerro D, Bar Shalom Y. Interacting multiple model trackingwith target amplitude feature[J]. IEEE Trans. on Aerospace and Electronic Systems, 1993, 29(2) .. 494 - 509.
  • 2Slocumb B J, Klusman M E. A multiple model SNR/RCS |ikeli hood ratio score for radar-based feature-aided tracking[R]. Nu- merica Corporation, 2005.
  • 3Musgicki D. Doppler-aided target tracking in heavy clutter[C]// Proc. of the 13th International Conference on Information Fu- sion, 2010:1-7.
  • 4Yang C, Bakich M, Blasch E. Pose angular-aiding for maneuve- ring target tracking[C]//Proc, of the 7th International Con- ference on Information Fusion, 2005 :32 - 39.
  • 5Hong L, Cong S, Pronobis M T, et al. Wavelets feature aided tracking (WFAT) using GMTI/HRR data[J].Signal Proces- sing, 2003:2683 - 2690.
  • 6Sullivan K, Agate C, Beckman D. Feature-aided tracking of ground targets using a class-independent approach[C]//Proc. of SP IE Conference on Signal Processing, Sensor Fusion, and Target Recognition ), 2004, 5429 : 54 - 65.
  • 7占荣辉,张军.特征辅助数据关联研究综述[J].系统工程与电子技术,2011,33(1):35-41. 被引量:10
  • 8Ruan Y, Hong L. Feature-aided tracking with GMTI and HRR measurements via mixture density estimation[J]. IEE Proceed- ing : Control Theory Application, 2006, 55(3) : 342 - 356.
  • 9Sullivan K J, Ressler M B, Williams R L. Signature-aided track-ing using HRR profiles[C]ff Proc. of SPIE Conference on Al- gorithms for Synthetic Aperture Radar Imagery V, 2001, 4382: 132-142.
  • 10Blasch E, Yang C. Ten methods to fuse GMTI and HRRR measurements for joint tracking and identification[-C]//Proc. of the 7th International Conference on Information Fusion, 2004, 1 - 8.

二级参考文献53

  • 1徐振海,王雪松,肖顺平.基于目标极化特征的数据关联算法[J].现代雷达,2004,26(12):30-32. 被引量:6
  • 2王继阳,陆军,粟毅.一种基于目标属性特征的多假设关联算法[J].计算机仿真,2005,22(1):76-79. 被引量:4
  • 3秦卫华,胡飞,秦超英.一种简化的联合概率数据关联算法[J].西北工业大学学报,2005,23(2):276-279. 被引量:15
  • 4王杰贵,罗景青,靳学明.无源跟踪中基于灰关联信息融合的概率数据关联算法[J].电子学报,2006,34(3):391-395. 被引量:16
  • 5Oh S, Russell S, Sastry S. Markov chain Monte Carlo data association for multi-target tracking[J]. IEEE Trans on Automatic Control ,2009,54(3) :481 - 497.
  • 6Karlsson R, Gustafsson F. Monte Carlo data association for multiple target tracking[C]// Proc. of lEE Conferences on Target Tracking : Algorithms and Applications ,2001 : 1 - 5.
  • 7Vermaak J, Godsill S J, Erez P. Monte Carlo filtering for multi-target tracking and data association[J]. IEEE Trans. on Aerospace Electronic Systems, 2005,41 ( 1 ) : 309 - 332.
  • 8Travers M, Murphey T, Pao L. Stochastic sampling based data association[ C] // Proc. of American Control Conference, 2010:1386 - 1391.
  • 9Wang J H, Liu W T, Wang M, et al. Multiple maneuvering target data association based on genetic algorithms[C].//Proc. of the 7th International Conference on Advanced Communication Technology ,2005 : 1011 - 1014.
  • 10Wang J H. Data association method based on fracta] theory[C]// Proc. of the 6th World Congress on Intelligent Control and Automation, 2006 : 4289 - 4292.

共引文献9

同被引文献16

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部