期刊文献+

镀钨碳纳米管增强铜基复合材料的制备及性能 被引量:8

Fabrication and properties of Cu matrix composites reinforced by tungsten-coated carbon nanotubes
原文传递
导出
摘要 采用羰基热分解法对多壁碳纳米管表面进行镀钨处理,并以镀钨碳纳米管和电解铜粉为原料,进行机械球磨混粉和放电等离子体烧结,制备了镀钨碳纳米管/铜基复合材料.采用场发射扫描电镜观察了粉体和复合材料的组织形貌,并对复合材料物相进行了X射线衍射分析.探讨了镀钨碳纳米管含量和放电等离子体烧结温度对复合材料致密度、抗拉强度、延伸率和电导率的影响.结果表明,镀钨碳纳米管质量分数为1%和烧结温度为850℃时,复合材料的致密度、抗拉强度和电导率最高.与烧结纯铜相比,复合材料的抗拉强度提高了103.6%,电导率仅降低15.9%. Multi-walled carbon nanotubes (CNTs) were coated with tungsten layers using a carbonyl thermal decomposition process, The tungsten-coated carbon nanotubes (W-CNTs) and electrolytic copper powders were used as starting materials to fabricated W-CNT/Cu composites by mechanical milling and spark plasma sintering (SPS). The morphologies and microstructures of the mixed powders and the sintered composite bulks were characterized by field-emission scanning electron microscopy (SEM) , and the phase analysis of the sintered composite bulks was carried out by X-ray diffraction ( XRD). The influences of W-CNT content and sintering temperature on the relative density, tensile strength, elongation and electrical conductivity of the W-CNT/Cu composites were investiga- ted. The experimental results show that the 1% W-CNT added composites sintered at 850 ℃ have the maximum relative density, tensile strength and electrical conductivity. In comparison with the sintered pure Cu bulk, the tensile strength increases by 103.6% but the electrical conductivity decreases only by 15.9% for the W-CNT/Cu composites.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2012年第7期823-829,共7页 Journal of University of Science and Technology Beijing
基金 国家自然科学基金资助项目(50971020)
关键词 金属基复合材料 碳纳米管 抗拉强度 电导率 放电等离子体烧结 metallic matrix composites copper tungsten carbon nanotubes tensile strength electrical conductivity spark plasma sintering
  • 相关文献

参考文献15

  • 1Shtogun Y V,Woods L M.Mechanical properties of defectivesingle wall carbon nanotubes.J Appl Phys,2010,107(6):articleNo.061803.
  • 2Hone J,Whitney M,Piskoti C,et al.Thermal conductivity ofsingle-walled carbon nanotubes.Phys Rev B,1999,59(4):2514.
  • 3Ajayan P M,Tour J M.Materials science:nanotube composites.Nature,2007,447:1066.
  • 4Kwon Y K,Tománek D.Orientational melting in carbon nanotuberopes.Phys Rev Lett,2000,84(7):1483.
  • 5Yang S Y,Ma C C M,Teng C C,et al.Effect of functionalizedcarbon nanotubes on the thermal conductivity of epoxy composites.Carbon,2010,48(3):592.
  • 6Guo Y,Cho H,Shi D L,et al.Effects of plasma surface modifi-cation on interfacial behaviors and mechanical properties of carbonnanotube-Al2 O3 nanocomposites.Appl Phys Lett,2007,91:article No.261903.
  • 7Cho S,Kikuchi K,Miyazaki T,et al.Multiwalled carbon nano-tubes as a contributing reinforcement phase for the improvement ofthermal conductivity in copper matrix composites.Scripta Mater,2010,63(4):375.
  • 8许龙山,陈小华,吴玉蓉,潘伟英,徐海洋,张华.碳纳米管铜基复合材料的制备[J].中国有色金属学报,2006,16(3):406-411. 被引量:26
  • 9Chu K,Guo H,Jia C C,et al.Thermal properties of carbonnanotube-copper composites for thermal management applications.Nanoscale Res Lett,2010,5(5):868.
  • 10Bakshi S R,Singh V,Seal S,et al.Aluminum composite rein-forced with multiwalled carbon nanotubes from plasma spraying ofspray dried powders.Surf Coat Technol,2009,203(10/11):1544.

二级参考文献15

  • 1Iijima S. Helical microtubules of graphitie carbon[J].Nature, 1991, 354: 56-58.
  • 2Treaey M M J, Ebbesen T W, Gibsom J M, et al. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996, 381:678-680.
  • 3Berber S, Kwon Y K, Tomdnek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys Rev Lett, 2000, 84(20): 4613-4616.
  • 4Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon polystyrene composites[J]. Appl Phys Lett, 2000, 76(20): 2868- 2870.
  • 5Gong X, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbon nanotube/polymer composites[J]. Chemistry of Materials, 2000, 12(4): 1049-1052.
  • 6Andrews R, Lacques D, Rao A M, et al. Nanotube composite carbon fibers[J]. Appl Phys Lett, 1999,753(9) : 1329 - 1331.
  • 7XuC L, WeiBQ, MaRZ, et al. Fabrication of aluminum-carbon nanotube composites and their electronical properties[J]. Carbon, 1999, 37(5): 855- 858.
  • 8Dong S R, Tu J P, Zhang X B. An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes[J]. Mater Sci Eng A,2001, 313(1-2): 83-87.
  • 9CHEN Xiao-hua, LI Wen-hua, XU Long-shan, et al.Preparation and properties of Cu matrix composite reinforced by carbon nanotubes[J]. Trans Nonferrous Met Soc China, 2005, 15(2) : 314- 318.
  • 10CHEN Xiao-hua, ZHANG Gang, CHEN Chuan-sheng, et al. Carbon nanotube composite deposits with high hardness and high wear resistance[J]. Advanced Engineering Materials, 2003, 5(7): 514-518.

共引文献25

同被引文献174

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部