期刊文献+

雄性秀丽隐杆线虫能提高热胁迫下种群生存优势 被引量:1

Male Caenorhabditis elegans could enhance the population's resistance against heat stress
原文传递
导出
摘要 秀丽隐杆线虫的性别包括自体受精的雌雄同体以及可以与雌雄同体交配的雄性,实验室培养的线虫种群中雄性比例很低,目前尚未发现雌雄同体与雄性线虫杂交后代的遗传优势.为了探讨雄性线虫个体存在的生态意义,本研究比较了热胁迫下两性线虫的生活史变化,以及有无雄性存在的线虫种群应对热胁迫的耐受程度.结果表明:虽然雄性线虫对热胁迫更为敏感,然而当有雄性存在的情况下,整个线虫种群数量在热胁迫后得以更快地恢复,而且与常温培养相比,经常受到热胁迫的线虫种群中雄性的比例可维持在一个较高的水平.这些结果暗示,在多变的自然状态下,秀丽隐杆线虫雄性性别的保留对种群数量的维持有重要的进化意义. The mating system of Caenorhabditis elegans includes selfing hermaphrodites and the males that cross with hermaphrodites.In lab-cultured C.elegans populations,the proportion of the males is very low,and till now,no detectable fitness of crossed offspring has been found.To explain why the C.elegans conserves a complicated pathway of male development through evolution,we compared the life history of the males and hermaphrodites under heat stress as well as the resistance of the populations with and without males against the heat stress.The results showed that though the life span of the males was more affected by heat stress,as compared with that of the hermaphrodites,the C.elegans populations with the males recovered faster after the stress,and the populations continuously subjected to the heat stress could maintain a higher proportion of the males than the populations cultured at normal temperature.These findings implied that under changeable natural environment,the existence of male C.elegans could be a significant evolutionary strategy for the population survival.
出处 《应用生态学报》 CAS CSCD 北大核心 2012年第8期2036-2040,共5页 Chinese Journal of Applied Ecology
基金 国家自然科学基金项目(41001339 40901036) 吉林省科技发展(201201004)资助
关键词 秀丽隐杆线虫 自交 杂交 热胁迫 Caenorhabditis elegans selfing hybridization heat stress
  • 相关文献

参考文献22

  • 1de Visser JAGM, Elena SF. The evolution of sex: Empirical insights into the roles of epistasis and drift. Natural Review Genetics, 2007, 8: 139-149.
  • 2Haigh J. The accumulation of deleterious genes in apopulation Muller's Ratchet. Theoretical Population Biology, 1978, 14: 251-267.
  • 3Rice WR, Chippindale AK. Sexual recombination andthe power of natural selection. Science, 2001, 294:555-559.
  • 4Lynch M, Berger R, Butcher D, et al. The mutationalmeltdown in asexual populations. Journal of Heredity,1993, 84: 339-344.
  • 5Hubbard EJA, Greenstein D. Introduction to the germline. WormBook, 2005, doi/10.1895/ wormbook.1.18.1.
  • 6Zarkower D. Somatic sex determination. WormBook,2006, doi/10. 1895/ wormbook. 1. 84. 1.
  • 7Hodgkin J. Problems and paradigms: Genetic sex determination mechanism and evolution. BioEssays, 1992,14: 253-261.
  • 8Singson A, Hill KL, L'Hernault SW. Sperm competition in the absence of fertilization in Caenorhabditis elegans. Genetics, 1999, 152: 201-208.
  • 9Morran LT, Cappy BJ, Anderson JL, et al. Sexual partners for the stressed: Faculative outcrossing in the selffertilizing nematode Caenorhabditis elegans. Evolution,2009, 63: 1473-1482.
  • 10Chasnov JR, Chow KL. Why are there males in the hermaphroditic species Caenorhabditis elegans? Genetics,2002, 160: 983-994.

二级参考文献58

  • 1李辉信,毛小芳,胡锋,马吉平.食真菌线虫与真菌的相互作用及其对土壤氮素矿化的影响[J].应用生态学报,2004,15(12):2304-2308. 被引量:17
  • 2吴纪华,宋慈玉,陈家宽.食微线虫对植物生长及土壤养分循环的影响[J].生物多样性,2007,15(2):124-133. 被引量:60
  • 3Pankhurst C, Doube BM, Gupta V. Biological indicators for soil health: Synthesis// Pankhurst C, ed. Bio- logical Indicators of Soil Health. Wallingford, UK: Cab International, 1997:419-435.
  • 4Orwin, KH, Wardle DA. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology and Biochemistry, 2004, 36 : 1907-1912.
  • 5Griffiths BS, Ritz K, Bardgett RD, et al. Ecosystem response of pasture soil communities to fumigation-induced microbial diversity reductions: An examination of the biodiversity-ecosystem function relationship. Oikos, 2000, 90:279-294.
  • 6Potts DL, Huxman TE, Enquist BJ, et al. Resilience and resistance of ecosystem functional response to a precipitation pulse in a semi-arid grassland. Journal of Ecology, 2006, 94:23-30.
  • 7Saison C, Degrange V, Oliver R, et al. Alteration and resilience of the soil microbial community following compost amendment: Effects of compost level and compostborne microbial community. Environmental Microbiology, 2005, 8:247-257.
  • 8Alkorta I, Aizpurua A, Riga P, et al. Soil enzyme activities as biological indicators of soil health. Reviews on Environmental Health, 2003, 18:65-73.
  • 9Pennanen T, Frostegard A, Fritze H, et al. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Applied and Environmental Microbiology, 1996, 62:420-428.
  • 10Griffiths BS, Kuan HL, Ritz K, et al. The relationship between microbial eommtmity structure and functional stability, tested experimentally in an upland pasture soil. Microbial Ecology, 2004, 47:104-113.

共引文献9

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部