期刊文献+

三块弯铁消色散磁聚焦结构最小发射度

Minimum emittance of three-bend achromats
下载PDF
导出
摘要 通过采用二极铁之间色散函数的相空间匹配所带来的约束条件,从而无需依赖具体的磁聚焦结构,利用Mathematica软件进行计算,得到了在三块二极铁弯转半径相等情况下,两种应用普遍的三块弯铁消色散(TBA)磁聚焦结构的最小发射度所对应的最小结构比例参数。得到了在TBA结构三块二极铁长度及弯转半径任意的情况下,TBA结构能取得的最小结构比例参数,以及TBA结构中三块二极铁长度及弯转半径所要满足的关系。由于计算中无需考虑具体的磁聚焦结构,得到的理论结果及其分析过程具有较强的通用性。 The calculation of the minimum emittance of three-bend achromats(TBAs) made by Mathematica software can ignore the actual magnets lattice in the matching condition of dispersion function in phase space.The minimum scaling factors of two kinds of widely used TBA lattices are obtained.Then the relationship between the lengths and the radii of the three dipoles in TBA is obtained and so is the minimum scaling factor,when the TBA lattice achieves its minimum emittance.The procedure of analysis and the results can be widely used in achromats lattices,because the calculation is not restricted by the actual lattice.
作者 李啸宇 徐刚
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2012年第8期1947-1950,共4页 High Power Laser and Particle Beams
关键词 最小发射度 磁聚焦结构 储存环 同步辐射光源 minimum emittance lattice storage ring synchrotron radiation light source
  • 相关文献

参考文献10

  • 1Murphy J, Month M. The physics of particle accelerators[M]. New York.. AIP, 1992 : 1939-1941.
  • 2Lee T Y, Choi J. Minimum electron beam size of triple bend lattice[J]. Nuclear Instruments and Methods in Physics Research, 2004, 534 (3) :371-375.
  • 3Wang Chunxi, Wang Yusong, Peng Yuemei. Optimal dipole-field profiles for emittance reduction in storage rings[J]. PhysicalReview Spe- cial Topic-Accelerators and Beams, 2011, 14(3) :4402 -4413.
  • 4Lee S Y. Emittance optimization in three- and multiple-bend achromats[J].Phys Rev E, 1996, 54(2) :1940-1944.
  • 5高巍巍,王琳,李为民,何多慧.Low emittance lattice optimization using a multi-objective evolutionary algorithm[J].Chinese Physics C,2011,35(9):859-864. 被引量:1
  • 6Emery L. Global optimization of damping ring using a muti-objective evolutionary algorithm[C]//Proc of 2005 Particle Accelerator Confer ence. 2005:2962-2964.
  • 7Yang L, Robin D, Sannibale F, et al. Global optimization of the magnetic lattice using genetic algorithm[C]//Proc of the 2008 European Particle Accelerator Conference. 2008:3050-3052.
  • 8Lee S Y. Accelerator physics[M]. 2nd ed. Singapore: World Scientific Publishing Company, 2004: 470-474.
  • 9Trbojevic D, Courant E. Low emittance lattices for electron storage rings revisited[C]//Proc of the 1994 European Particle Accelerator Con- ference. 1994:1000-1002.
  • 10Teng L, Lee S Y. Theoretical minimum emittance lattice for an electron storage ring[C]//Proc of the 1991 Particle Accelerator Confer-ence. 1991:2679-2681.

二级参考文献8

  • 1Lee S Y, Teng L. Theroretical Minimum Emittance Lat- tice for an Electron Storage Ring. In: Proceedings of 1991 Particle Accelerator Conference. San Francisco, California, 1991. 2679-2681.
  • 2Lee S Y. Phys. Rev. E, 1996, 54:1940-1944.
  • 3Emery L. Global Optimization of Damping Ring Using a Muti-objective Evolutionary Algorithm. In: Proceedings of 2005 Particle Accelerator Conference. Knoxville, Ten- nessee, 2005. 2962-2964.
  • 4YANG L, Robin D, Sannibale F, Steier C. Global Opti- mization of the Magnetic Lattice Using Genetic Algorithm. In: Proceedings of the 2008 European Particle Accelerator Conference. Genoa, Italy, 2008. 3050-3052.
  • 5Kalyanmoy Deb. IEEE Trans Evol Comput, 2002, 6:182- 197.
  • 6Konak A, Coit D W, Smith A E. Reliability Engineering and System Safety, 2006, 91:992-1007.
  • 7Lee S Y. Accelerator Physics. Second Edition. Singapore: World Scientific, 2004. 466-488.
  • 8Dattoli G, Voykov G K, Carpanese M. Phys. Rev. E, 1995, 52:6809-6817.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部