摘要
研究了L-fuzzy闭包空间的T1与T2分离性.首先定义了L-fuzzy闭包空间的T1与T2分离性的概念,其次用类比、推广的方法讨论了T1与T2分离性的遗传性,可乘性等性质.证明了一个T1(resp.,T2)L-fuzzy闭包空间的子空间仍是T1(resp.,T2)L-fuzzy闭包空间,一族T1(resp.,T2)L-fuzzy闭包空间的乘积空间仍是T1(resp.,T2)L-fuzzy闭包空间的结果.这些结果表明定义的L?fuzzy闭包空间的T1与T2分离性具有遗传性,可乘性.
T1 and T2 separation axioms of L-fuzzy closure spaces are studied in this paper. Firstly,the concepts of T1 and T2 separation axioms in L-fuzzy closure spaces are defined, then their hereditary property and productive property are disscussed by using the methods of analogy and generalization. It is proved that both a sub space 0f T~ (resp. ,Tz) L-fuzzy closure space and the product space of a class of T1 (resp. , T2) L-fuzzy closure spaces are a T1 (resp. , T2) L-fuzzy closure space. These results indicate that the T1 and T2 separation axioms defined in this paper are hereditary and productive.
出处
《西安工业大学学报》
CAS
2012年第5期345-348,共4页
Journal of Xi’an Technological University
基金
陕西省教育厅专项科研计划项目(11JK0484)
西安工业大学校长基金(XAGDXJJ1029)
关键词
L-fuzzy闭包空间
T1分离性
T2分离性
遗传性
可乘性
L-fuzzy closure space
T1 separation axiom
T2 separation axiom
hereditary property
productive property