期刊文献+

似然迭代离差差分滤波算法的机动再入目标状态估计 被引量:2

State Estimation of Maneuvering Reentry Target Using Likelihood-Based Iterated Divided Difference Filter
下载PDF
导出
摘要 针对使用离差差分滤波算法对机动再入目标状态估计时,不能充分用到最新量测信息,状态估计误差较低的情况,提出一种新的滤波算法——似然迭代离差差分滤波算法.该算法在二阶离差差分滤波算法的量测更新过程中采用Gauss-Newton方法不断逼近最大后验估计,且使用迭代状态估计值代替状态预测值,修正迭代公式,并使用确保产生的迭代序列向最大似然面移动的迭代终止条件.使用似然迭代离差差分滤波算法估计机动再入目标状态,蒙特卡罗仿真表明,该算法不仅提高了状态估计精度,而且还有很快的收敛速度. The accuracy of the state esitmation is lower because the latest measurements are not fully used when the second-order divided difference filter is applied to estimate the state of maneuvering reentry target. A new algorithm, named likelihood-based iterated divided difference filter, is proposed. The Gauss- Newton method is used to approximate the maximun posteriori estimation in the measurement update process of the new algorithm, and state prediction is substituted with iteration state estimation. The iterate termination condition used makes the generated sequence move up to the likelihood surface. The proposed algorithm is applied to state estimation for maneuvering reentry target. Monte Carlo experiment results indicate that the new algorithm improves the accuracy of the state estimation and has a fast covergence rate.
出处 《西安工业大学学报》 CAS 2012年第5期349-354,共6页 Journal of Xi’an Technological University
关键词 状态估计 非线性滤波 离差差分滤波Gauss—Newton方法 机动再入目标 state esitmation nonlinear filtering divided difference filter gauss-newton method maneuvering reentry target
  • 相关文献

参考文献9

  • 1GELB A. Applied Optimal Estimation[M]. Cambridge, MA: The MIT Press, 1974.
  • 2BAR S Y, LI X R, KIRUBARAJAN T. Estimation with Applications to Tracking and Navigation[M]. New York: John Wiley & Son,Inc,2001.
  • 3JULIER S J, UHLMANN J K. Unscented Filtering and Nonlinear Estimation[J]. Proceedings of the IEEE, 2004,92 (12) : 1958.
  • 4潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 5NORGAARD M, POULSEN N K, RAVN O. New Developments in State Estimation for Nonlinear Systems[J]. Automatiea, 2000,36 (11) : 1627.
  • 6ZHAN R,WAN J. Iterated Unscented Kalman Filter for Passive Target Traeking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007,43 (3) : 1155.
  • 7LI X R,JILOV V P. A Survey of Maneuvering Target Tracking Part III: Measurement Models [ J ]. Signal and Data Processing of Small Targets, 2001,4473: 423.
  • 8FARINA A, RISTIC B, BENVENUTI D. Tracking a Ballistic Target: Comparison of Several Nonlinear Filters [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002,38(3) : 854.
  • 9CHANG C B, WHITING Application of Adaptive Maneuvering Trajectory R H, ATHANS M. Filtering Methods to Estimation [ R ]. Massachusettes: Massachusettes Institute, 1975.

二级参考文献74

  • 1Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188.
  • 2Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141.
  • 3Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632.
  • 4Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27.
  • 5Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121.
  • 6Julier S J,Uhlmann J K.A new extension of the Kalman filter to nonlinear systems[A].The Proc of AeroSense:11th Int Symposium Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:54-65.
  • 7Julier S J.A skewed approach to filtering[A].The Proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control[C].Orlando,1998:271-282.
  • 8Julier S J.The spherical simplex unscented transformation[A].American Control Conf[C].Denver,2003:2430-2434.
  • 9Julier S J,Uhlmann J K,Durrant-Whyte H F.A new approach for the nonlinear transformation of means and covariances in filters and estimators[J].IEEE Trans on Automatic Control,2000,45(3):477-482.
  • 10Lefebvre T,Bruyninckx H,De Schutter J.Comment on"a new method for the nonlinear transformation of means and covariances in filters and estimators"[J].IEEE Trans on Automatic Control,2002,47(8):1406-1408.

共引文献229

同被引文献15

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部