摘要
总体平均经验模式分解(EEMD)方法是一种先进的时频分析方法,非常适合于对非平稳故障微弱信号的分析处理。文中介绍了EEMD方法的原理与算法实现步骤,重点分析了EEMD方法避免模式混淆的机理。利用EEMD方法对齿轮箱振动信号进行分析,成功提取了小齿轮磨损故障特征,验证了EEMD方法在故障微弱信号特征提取的有效性。
Ensemble Empirical Mode Decomposition(EEMD) is one of the advanced time-frequency analyzing methods,it is very suitable for processing non-stationary fault weak signals.This paper introduces the principle and algorithm of EEMD method,and analyzes the principle of avoiding mode mixing using EEMD method.Finally,EEMD method is used to analyzing vibration signal of gear box,and the tear fault feature of small gear is successfully extracted using EEMD method,it verifies the effectiveness of EEMD method for extracting fault feature in weak signal.
出处
《电子设计工程》
2012年第14期72-74,共3页
Electronic Design Engineering
基金
国家自然科学基金资助项目(61104190)
关键词
总体平均经验模式分解
微弱信号
特征提取
磨损故障
EEMD(Ensemble Empirical Mode Decomposition)
weak signal
feature extraction
tear fault