期刊文献+

基于EEMD的故障微弱信号特征提取研究 被引量:7

Research on fault weak signal feature extraction based on EEMD method
下载PDF
导出
摘要 总体平均经验模式分解(EEMD)方法是一种先进的时频分析方法,非常适合于对非平稳故障微弱信号的分析处理。文中介绍了EEMD方法的原理与算法实现步骤,重点分析了EEMD方法避免模式混淆的机理。利用EEMD方法对齿轮箱振动信号进行分析,成功提取了小齿轮磨损故障特征,验证了EEMD方法在故障微弱信号特征提取的有效性。 Ensemble Empirical Mode Decomposition(EEMD) is one of the advanced time-frequency analyzing methods,it is very suitable for processing non-stationary fault weak signals.This paper introduces the principle and algorithm of EEMD method,and analyzes the principle of avoiding mode mixing using EEMD method.Finally,EEMD method is used to analyzing vibration signal of gear box,and the tear fault feature of small gear is successfully extracted using EEMD method,it verifies the effectiveness of EEMD method for extracting fault feature in weak signal.
出处 《电子设计工程》 2012年第14期72-74,共3页 Electronic Design Engineering
基金 国家自然科学基金资助项目(61104190)
关键词 总体平均经验模式分解 微弱信号 特征提取 磨损故障 EEMD(Ensemble Empirical Mode Decomposition) weak signal feature extraction tear fault
  • 相关文献

参考文献6

二级参考文献21

  • 1李崇晟,屈梁生.齿轮早期疲劳裂纹的混沌检测方法[J].机械工程学报,2005,41(8):195-198. 被引量:13
  • 2WU Zhaohua, HUANG Norden E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proc R Soc Lond: A, 2004,460:1597-1611.
  • 3WU Zhaohua, HUANG Norden E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009,1(1) :1-41.
  • 4HUANG Norden E, ZHENG Shen, STEVEN R L. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond.. A, 1998, 454:903- 995.
  • 5FLANDRIN P, CONCALVES G, RILLIN G. Empirical mode decomposition as a filter bank [J]. IEEE Signal Processing, 2004,11 (2) : 112-114
  • 6Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method [ J ]. Proe. R. Soc. Lond. A, 2004,460:1597-1611.
  • 7Wu Z H, Huang N E. Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009,1 ( 1 ) : 1 - 41.
  • 8Kachenoura A, Albera L, Bellanger J J, et al. Nonminimum Phase Identification Based on Higher Order Spectrum Slices [ J]. IEEE Transaction on Signal Processing, 2008,56 (5) : 1821 - 1829.
  • 9Hnang N E, Zheng S, Long S R. The empirical mode decomposition and the hilbert spectrum for nonlinear and non - stationary time series analysis [J]. Proc. R. Soc. Lond, 1998, 454 : 903 - 995.
  • 10Yeh J R, Huang N E, Wu Z H. Investigating complex patterns of blocked intestinal artery blood pressure signals by empirical mode decomposition and linguistic analysis[C]. 2007 International Symposium on Nonlinear Dynamics(2007 ISND).

共引文献86

同被引文献61

引证文献7

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部