摘要
本文首先对Banach格E给出了条件,使得对任意非Dedekindσ-完备的Banach格F,正则算子空间L^r(E,F)均是一Riesz空间。其次对Banach格F给出了一些刻划,使之每个由L^p空间到F内的连续线性了均是正则的。一些相关结果也得以讨论。
In this paper we first present some conditions on Banach lattice E such that the space Lr(E,F) is a Riesz space even if Banach lattice F is not Dedekind a-complete, then we deduce some characterizations on Banach lattice F such that each continuous operator from a Lp-space into F is regular. Some related results are also provided.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第2期205-212,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家教委回国博士基金!1998-679