摘要
本文利用引入的KS性质,刻划了那些其Scott拓扑可由开滤子生成的分配备格,该结果也是对[1]中一公开问题的一种解答.本文的刻划定理对于判定分配备格的Scott拓扑是否与Scott开滤子拓扑一致具有较强的可操作性,应用该刻划定理给出大量非连续格,其Scott拓扑具有开滤子基.
In this paper, AS property is introduced, and a problem in [1] is discussed. First, the paper shows that the Scott topology on a distributive complete lattice L has a basis of open filters if and only if L is a KS. frame for some ordinal number a, i.e., KS frame. By the result, one can judge whether the Scott topology and the Scott open filter topology on a distributive complete lattice are coincide. Then some KS frames are constructed in the paper, which are not continuous.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第2期213-220,共8页
Acta Mathematica Sinica:Chinese Series
基金
辽宁省自然科学基金