摘要
本文讨论了具有亏值的超越亚纯函数的增长性,证明了如下定理:设有下级为有穷的超越亚纯函数f(z)具有一亏值(有穷或否),(z)=fnQ[f]+ P[f]为f(z)的微分多项式,其中Q[f](≠0)与P[f](≠0)的各项系数均为级不超过的亚纯函数,且 P[f]的权 .又△(θj)(j= 1;2;…;q; θq+1=θ1+2π)为条从原点出发的半直线;且对有:其中为不依赖于的非负常数,则必有f{z}的级max。
In this paper, we discus the growth of meromorphic functions with a deficient value, and prove that. Suppose that f(z) is a transcendental meromorphic function of lower order with a deficient value, let =fnP[f] + P(f), where, P[f] and Q[f] are differential polynomials of f(z), and all of the orders of the coefficients of Q[f] and P[f] are less than , furthermore, the weight of P(f) is at most n - 3. If there exist finite number of rays satisfy with a positive number , for any small positive number , then max1 where, is the order of f(z).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第2期261-268,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金!19671091
关键词
亚纯函数
微分多项式
增长性
亏值
Meromorphic function, Differential Polynomial, Growth