摘要
本文证明了每一个p-亚正常算子A,都相应存在一个亚正常算子 ,使得A与 有相同的闭值域点、相同的本质谱和谱.由此推出如果A是p-亚正常算子,B是任一有界线性算子,若存在有界线性算子X有稠值域,使得XB=AX,则σ(A)(B)此外还证明了,如果A是p-亚正常算子且 R(A)闭或KerA=KerA*, B是任一有界线性算子,A与B拟相似,则e(A)(B).
In this paper, we prove that for every p-hyponormal operator A, there corresponds a hyponormal operator A such that A and A have the same closed range points and same essential spectrum and same spectrum. This is then used to derive that if A is a p - hyponormal operator, B is any bounded linear operator and there exists a dense range operator X such that XB = AX, then (A) (B). We also prove that if A is a p-hyponormal operator and R(A) is closed or KerA = KerA , B is any bounded linear operator, B and A are quasisimilar, then (A) (B).
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2000年第2期343-348,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金!19971017
福建省自然科学基金
关键词
p-亚正常算子
拟相似
本质谱
希尔伯物空间
Hilbert space
p-hyponormal operator, Quasisimilarity
Essential spectrum