摘要
本文利用矩阵的MP逆与奇异值分解作为工具,给出了矩阵方程LX= M 与LXK= M 存在实部有定解的充要条件以及这种解的一般形式.
By using the Moore\|Penrose inverse and the singular value decomposition of matrices, the necessary and sufficient conditions for the existence of the solutions with definite real part for matrix equations LX=M and LXK=M are obtained together with the general forms of such solutions.$$$$
出处
《高校应用数学学报(A辑)》
CSCD
北大核心
2000年第1期6-10,共5页
Applied Mathematics A Journal of Chinese Universities(Ser.A)
基金
江苏省教委自然科学基金
关键词
实部有定解
矩阵方程
充要条件
The Moore-Penrose Inverse, Singular Value Decomposition, Hermitian Positive Semi-Definite(Positive Definite)Matrix, Matrix with Positive Semi-Definite(Positive Definite)Real Part.