摘要
矩阵特征向量计算在实际问题中有着广泛应用.本文采用神经网络计算方法来研究主元分析(PCA)和次元分析(MCA)问题.我们首先考虑单神经元的情况(p=1),给出了求矩阵最大特征元和最小特征元的算法.然后对多神经元情形(p>1),给出了抽取矩阵主元和次元的算法.和目前许多已知的算法不一样,在我们PCA的算法中改变矩阵的负号就能够得到MCA问题的解.
In practical life, how to compute eigenvectors has much application. In this paper, by using the method of neuron computation, problems on the principle component analysis (PCA) and on the minor component analysis are studied. First, for the single neutron case p = 1, algorithms on computing the principle component and the minor component of a matrix are presented. Secondly, for the several neutrons case p > 1, algorithms on computing several principle components and several minor components of a matrix are obtained. Our algorithms on MCA can be immediately deduced from our algorithms on PAC by changing the sign, which is different from most conventional algorithms.
出处
《应用数学学报》
CSCD
北大核心
2000年第2期233-239,共7页
Acta Mathematicae Applicatae Sinica
基金
国家自然科学基金
国家教委博士点基金
博士后基金
国家科委攀登计划认知科学(神经网络)重大关键项目资助
关键词
神经网络
学习算法
特征向量
矩阵
计算
Neural network, fearing algorithm, principal component analysis (PCA), minor component analysis (MCA)