期刊文献+

不可逆往复式变比热工质Brayton循环性能分析 被引量:3

Performance Analysis of Irreversible Reciprocating Brayton Cycle with Variable Specific Heat of Working Fluid
下载PDF
导出
摘要 对不可逆往复式Brayton循环的有限时间热力学性能进行模型研究.在考虑工质变比热及压缩和膨胀过程的内不可逆损失基础上,导出了循环比功和循环热效率的解析表达式.在典型循环特性参数条件下,对上述模型进行了数值计算.研究结果表明,工质变比热及压缩和膨胀过程的内不可逆损失对循环性能有一定影响,其中压缩和膨胀过程的内不可逆损失对循环性能影响更显著.研究结果对实际内燃机性能的评估及改进有一定的指导意义. The mathematical model for finite-time thermodynamics characteristics of an irreversible reciprocating Brayton cycle is analyzed.The analytical formulas of the specific work and the actual cycle thermal efficiency are derived by taking the variable specific heats of working fluid and the losses of internal irreversibility in the compression process and the expansion process into account.The model mentioned above is carried on the numerical calculus under typical circulation performance parameters.The research results show that the variable specific heat and the efficiencies of the losses of internal irreversible compression and internal irreversible expansion through the cylinder have a certain influence on the cycle performance , and the losses of internal irreversibility in the compression process and the expansion process through the cylinder have more remarkable influence on the cycle performance.The research results can provide a theoretical guide for the assessment and improvement of the performance of actual internal combustion engines.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期327-331,共5页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金资助项目(51078068) 上海市自然科学基金资助项目(10ZR1401300) 东华大学基本科研业务专项基金资助项目(11D11314)
关键词 Brayton循环 往复式循环 不可逆性 变比热 Brayton cycle reciprocating cycle irreversible variable specific heat
  • 相关文献

参考文献13

  • 1PEREZ-GRANDE I, LEO T J. Optimization of a commercial aircraft environmental control system [J]. Appl Thermal Eng, 2002, 22(17):1885-1904.
  • 2HUANG Y C, HUNG C I, CHEN C K. An ecological exergy analysis for an irreversible-Brayton engine with an external heat source [J]. Proc Inst Mech Eng, Part A: J Power and Energy, 2000, 214(5) :413-421.
  • 3CHEN L G, WANG J H, SUN F R. Power density analysis and optimization of an irreversible closed intercooled regenerated Brayton cycle [J]. Mathematical and Computer Modeling,2008, 48(3/4) :527-540.
  • 4SAHIN B, KODAL A, YILMAZ T, et al. Maximum power density analysis of an irreversible Joule-Brayton engine [J]. J Phys D:Appl Phys, 1996, 29(5):1162-1167.
  • 5CHENG C Y, CHEN C K. Ecological optimization of an irreversible Brayton heat engine [J]. J Phys D: Appl Phys, 1999, 32(3):350-357.
  • 6YILMAZ T. Performance optimization of a gas turbine-based cogeneration system [J]. J Phys D: Appl Phys, 2006, 39(11):2454-2458.
  • 7RADCENCO V, VERGAS J V C, BEJAN A. Thermodynamic optimization of a gas turbine power plant with pressure drop irreversibilities [J]. Trans ASME J Energy Res Teeh, 1998, 120(3) : 233-240.
  • 8CHEN L G, LI Y, SUN F R, et al. power optimization of open- cycle regenerator gas-turbine power plants [J]. Appl Energy, 2004, 78(2) :199-218.
  • 9QIN X Y, CHEN L G, SUN F R, et al. The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles [J]. Eur J Phys, 2003, 24(4):359-366.
  • 10GE Y L, CHEN L G, SUN F R, et al. Reciprocating heat- engine cycles [J]. Appl Energy, 2005, 81(4):397-408.

同被引文献24

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部