期刊文献+

带Poisson跳的随机时滞微分方程的渐进稳定性

Asymptotic Stability of Neutral Stochastic Differential Equations with Delays and Poisson Jumps
下载PDF
导出
摘要 研究了一类非线性变时滞带跳的随机微分方程,利用不动点原理,给出了退化解p阶矩渐进稳定的充要条件,改进和提高了现有文献的相应结果. A class of non-linear neutral stochastic differential equations with delays and Poisson jumps is considered.A theorem of asymptotic stability in pth moment with a sufficient and necessary condition is given by means of fixed point principle.Some known results are generalized and improved.
出处 《东华大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期361-366,共6页 Journal of Donghua University(Natural Science)
基金 国家自然科学基金资助项目(10871041) 安徽高校省级自然科学基金资助项目(KJ2011z147) 蚌埠学院自然科学基金资助项目(2010ZR10)
关键词 随机微分方程 渐进稳定 POISSON跳 stochastic differential equations asymptotic stability Poisson jumps
  • 相关文献

参考文献15

  • 1KOIMANOVSKII V B. On the stability of stochastic systems with delay[J]. Probl IM Transm, 1969, 5(4): 59-67.
  • 2MAO X R. Stochastic differential equations and applications [M]. Chiehester: Horwood, 1997.
  • 3BURTON T A. Stability by fixed point theory or Lyapunov theory: A eomparison[J]. Fixed Point Theory, 2003, 4(1): 15-32.
  • 4BURTON T A. Fixed points, stability and exact linearization [J]. Nonlinear Anal, 2005, 61(5):857-870.
  • 5BURTON T A, FURUMOCHI T. Asymptotic behavior of solutions of functional differential equations by fixed point theorems[J]. Dynam Systems Appl, 2002, 11:499-521.
  • 6BURTON T A, ZHANG B. Fixed points and stability of an integral equation:Nonuniqueness[J]. Appl Math Lett, 2004, 17: 839-846.
  • 7BURTON T A. Stability and fixed point methods for highly nonlinear delay equations[J]. Fixed Point Theory, 2004, 5 (1) : 3-20.
  • 8ZHANG B. Fixed points and stability in differential equations with variable delays [J]. Nonlinear Anal, 2005, 63 (5) : 233-242.
  • 9LUO J W. Fixed points and stability of neutral stochastic delay differentialecluations[J]. J Math Ana Appl, 2007, 334(1):431-440.
  • 10WU M, HUANG N J, ZHAO C W. Fixed points and stability in neutral stochastic differential equations with variable delays [J]. Fixed Point Theory Appl, 2008. doi: 10. 1155/ 2008/407352.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部