摘要
研究转动相对论性完整与非完整力学系统的Lie对称性和守恒量· 定义转动相对论力学系统的无限小变换生成元 ,利用微分方程在无限小变换下的不变性 ,建立转动相对论性力学系统的Lie对称确定方程 ,得到结构方程和守恒量的形式 。
The Lie symmetries and conserved quantities of the rotational relativistic holonomic and nonholonomic systems were studied. By defining the infinitesimal transformations' generators and by using the invariance of the differential equations under the infinitesimal transformations, the determining equations of Lie symmetries for the rotational ralativistic mechanical systems are established. The structure equations and the forms of conserved quantities are obtained. An example to illustrate the application of the results is given.
出处
《应用数学和力学》
EI
CSCD
北大核心
2000年第5期495-500,共6页
Applied Mathematics and Mechanics
基金
国家自然科学基金!(19972 0 10 )
河南省自然科学基金资助课题!(9340 6 0 80 0
984 0 5310 0 )
关键词
转动系统
相对论
分析力学
守恒量
李对称性
rotational systems
relativity
analytic mechanics
Lie symmetry
conserved quantity
differential equation