期刊文献+

基于有限差分法的水平旋转梁自由振动解析 被引量:7

Free vibration analysis of horizontal spinning beams by using finite difference method
下载PDF
导出
摘要 在水平旋转梁模型的基础上,利用哈密尔顿原理建立了动力学微分方程。在悬臂梁边界条件下,运用二阶中心差分原理对欧拉梁进行有限差分离散,推导出系统模型的自由振动差分方程。运用MATLAB振动工具箱和一般阻尼振动理论对其进行了编程运算,得到了不同转速下水平梁的无量纲固有频率。相关文献的结果比对验证了有限差分方法的有效性,然后对旋转梁的自由振动特性进行了扩展分析和结果的优化处理。另外,对固支梁和自由梁的自由振动也进行了解析。 Dynamic differential equations were built according to Hamiltonian principle for a horizontal spinning beam. The cantilever beam was discretized by second-order central differences, and difference equations of free vibration were developed. A MATLAB vibration toolbox program and the general damped vibration theory were introduced to derive the dimensionless natural frequencies at different rotational speeds. The finite difference method was proved effective by comparing the results with those in other references, and free vibration characteristics of spinning uniform beams were analysed and optimized. Numerical analysis of free vibration characteristics was also made on free-free and clamped- clamped beams.
出处 《振动与冲击》 EI CSCD 北大核心 2012年第14期43-46,共4页 Journal of Vibration and Shock
基金 国家自然科学基金(10972124) 山东省教育厅科技项目(J08LB04)
关键词 旋转梁 自由振动 有限差分法 固有频率 spinning beam free vibration finite difference method natural frequency
  • 相关文献

参考文献9

  • 1Bauer H F. Vibration of a rotating uniform beam, part I:orientation in the axis of rotation[ J]. J Sound Vib, 1980,72: 177 - 189.
  • 2Zu J W,Han R P. Natural frequencies and normal modes of a spinning beam with general boundary conditions [ J ]. J Appl Mech-Trans ASME, 1992,59 : 197 - 204.
  • 3Song O, Librescu L. Anisotropy and structural coupling on vibration and instability of spinning thin-walled' beams [ J ]. J Sound Vib, 1997,204:477 - 494.
  • 4Song O, Librescu L. Free vibration of anisotropy composite thin- walled beams of closed cross-section contour [ J ]. J Sound Vib, 1993,114 : 129 - 147.
  • 5Song O, Kim J B. Synergistic implications of tailoring and adaptive materials technology vibration control of anisotropic thin-walled beams [ J ]. International Journal of Engineering Science,2001,39:71 - 94.
  • 6Song O, Librescu L. Vibration and stability control of smart composite rotating shaft via structural tailoring and piezoelectric strain actuation[J]. J Sound Vib,2002 ,257 :503 -525.
  • 7Banerjee J R. Development of a dynamic stiffness matrix for free vibration analysis of spinning beams [ J ]. Computers and Structures, 2004,82 : 2189 - 2197.
  • 8Chen M L, Liao Y S. Vibrations of pretwisted spinning beams under axial compressive loads with elastic constraints [ J ]. J Sound Vib, 1991,147:497 - 513.
  • 9Yu S D, Cleghorn W L. Free vibration of a spinning stepped Timoshenko beam [ J ]. J Appl Mech-Trans ASME, 2000,67 : 839 - 841.

同被引文献75

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部