摘要
在 Banach空间中,利用 Banach几何方法及度量投影算子,将 E.H.Moors的学生,曾远荣(Y.Y. Tseng)在 Hilbert空间中为线性算子引入的 Tseng广义道,推广到 Banach空间,引入 Tseng度量广义逆(此时的 Tseng度量广义逆一般为齐性算子,而非线性算子),利用 Banach空间对偶映射与广义正交分解定理给出 Tseng度量广义道存在的充分必要条件.讨论了最大Tseng度量广义逆在最优化,控制论及微分方程不适定问题有着直接应用的一些基础性质.
The concept of Tseng-metric generalized inverse of linear operator in Banach spaces is introduced in this papert by Tseng Y.Y, a student of E.H. Moors, for Hilbert spaces generalizing that defined. Unlike the case in Hilbert spaces, the Tseng-metric generalized inverse of linear operator in Banach space is usually homogeneous, and nonlinear. By means of the dual mapping and geometric properties of Banach spaces, the necessary and sufficient condition for existence of the Tseng metric generalized inverse is given, and the properties of the maximum Tseng metric generalized inverse is disscused in this paper as well.
出处
《系统科学与数学》
CSCD
北大核心
2000年第2期203-209,共7页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金
黑龙江省自然科学基金
关键词
TSENG度量广义逆
线性算子
巴拿赫空间
Banach space, Tseng-metric generalized inverse, dual mapping, homogeneous operator.