期刊文献+

高阶对称微分算子谱是离散的一个充分必要条件 被引量:2

A NECESSARY AND SUFFICIENT CONDITION FOR THE DISCRETENESS OF SPECTRUM OF 2n TH-ORDER SELF-ADJOINT DIFFERENTIAL OPERATORS
原文传递
导出
摘要 采用泛函分析与不等式渐近估计的方法,根据系数的特点,给出了2n阶对称微分 算子的自伴扩张的谱是离散的一个充分必要条件. in this paper, we give a necessary and sufficient condition for the discreteness of the spectrum of 2n th-order self-adjoint differential operators, which are all self-adjoint extensions of A0, where
作者 王忠 王忠
出处 《系统科学与数学》 CSCD 北大核心 2000年第2期224-227,共4页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金!19871037 内蒙古自然科学基金!990301-1
关键词 对称微分算子 本质谱 自伴扩张 离散谱 充要条件 Differential operator, spectrum, essential spectrum, discrete spectrum.
  • 相关文献

参考文献2

共引文献30

同被引文献14

  • 1孙炯,王忠.常微分算子谱的定性分析[J].数学进展,1995,24(5):406-422. 被引量:31
  • 2Molchanov A M. The conditions for the discreteness of the spectrum of self-adjoint second-orderdifferential equations. Trudy Moskov. Mat. Obsh., 1953,2: 169-200.
  • 3Briman I. Self-adjointness and spectra of Sturm-Liouville operators. Math. Scand., 1959,7(1):219-239.
  • 4Glazman I M. Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators.Jerusalem: Isreal Program for Scientific Translations, 1965.
  • 5Birman M Sh. On the spectrum of singular boundary-value problem. Math. Scand., 1961,55(97)(2): 125-174.
  • 6Miiller-Pfeiffer E. Spectral Theory of Ordinary Differential Operators. Chichester: Ellis Horwood,1981.
  • 7Sun J, Wang A P, Zettl A. Continuous spectrum and square-integrable solutions of differentialoperators with intermediate deficiency index. Journal of Functional Analysis, 2008, 255: 3229-3248.
  • 8Qi J G, Chen S Z. Essential spectra of singular matrix differential operators of mixed order inthe limit circle case. Math. Nachr., 2011,284(2-3): 342-354.
  • 9Hao X L, Sun J, Zettl A. The spectrum of differential operators and square-integrable solutions.Journal of Functional Analysis, 2012, 262: 1630-1644.
  • 10曹之江.常微分筧子.上海:上海科学技术出版社,1987.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部