期刊文献+

L_1范数的总变分正则化超分辨率图像重建 被引量:2

Ll Norm of Total Variation Regularization Based Super Resolution Reconstruction for Images
下载PDF
导出
摘要 超分辨率图像重建技术能够综合利用多帧离散图像、多组视频序列、或单帧图像与训练样本图像之间的互补信息,重建质量更好、空间分辨率更高的图像数据,弥补原有图像数据空间分辨率的不足,提高图像空间解像力和清晰度。介绍了基于正则化方法的超分辨率图像重建的研究现状和以正则化为基础的几种重建方法在近几年的研究和发展趋势。在此基础上,采用L1范数对重建图像保真度进行约束,利用总变分正则化克服重建问题的病态性,有效地保持了图像的边缘。实现了对包含文字信息的图像的正则化超分辨率重建,实验验证了方法的有效性。 Super resolution image reconstruction is a new technology which means to use multiple video sequences, or single - frame image and the training sample images of complementary information between the images to reconstruct a better quality, higher spatial resolution image data, make up the orig- inal image data is the lack of spatial resolution, improved image spatial resolution for force and clarity. Describes the method based on regularization of the super - resolution image reconstruction. On this basis, using the L1 norm of the reconstructed image fidelity constraint, the use of total variatJion regularization to overcome the ill - conditioned reconstruction problems, effectively maintain the edge of the image. To achieve a text message containing the image of regularized super - resolution reconstruction, experimental verification of the effectiveness of the method.
出处 《微处理机》 2012年第3期37-39,共3页 Microprocessors
关键词 总变分 正则化 超分辨率 L1范数 Total variation Regularization Super - resolution L1 norm
  • 相关文献

参考文献5

  • 1TSAI R Y, HUANG T S, Multiframe image restoration andregistration[J]. Advances in Computer Vision and Image Processing, 1984,1 (2) :317 - 339.
  • 2许静,王国宇,曲训正.基于MAP算法的图像超分辨率重建[J].微计算机信息,2007,23(21):295-296. 被引量:4
  • 3占美全,邓志良.基于L_1范数的总变分正则化超分辨率图像重建[J].科学技术与工程,2010,10(28):6903-6906. 被引量:15
  • 4S Farsiu, M D Robinson, M Elad, P Milanfar. Fast and robustmuhiframe super resolution [ J ]. IEEE ransactions on Image Processinz.2004.13 (10): 1327 - 1544.
  • 5L Lucchese, G M Cortelazzo. A noise - robust frequency domain technique for estimating planar roto - translations [ J ]. IEEE Transactions on Signal Processing, 2000,48 (6) :1769 - 1786.

二级参考文献20

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2贺彬,王国宇.不同视点海底图像拼接算法[J].微计算机信息,2005,21(12X):152-154. 被引量:6
  • 3Nguyen N,Milanfar P.A computationally efficient image super resolution image reconstruction algorithm.IEEE Transactions on Image Processing,2001;10(4):573-583.
  • 4Vogel C R,Oinaa M E.Fast robust total variation-Based reconstruction of noisy,blurred images.IEEE Transactions on Image Processing,1998; 7(6):813-824.
  • 5Wohlberq B,Rodriguez P.An L1-TV algorithm for deconvolution with salt an pepper noise.IEEE Signal Processing,2009;4(19):20-24.
  • 6Shen H,Lan E,Zhang L.A total variation regularization based super resolution reconstruction algorithm for digital video.EURASIP Journal on Advances in Signal Processing,2007:1-16.
  • 7Elad M,Helor Y.A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur.IEEE Transactions on Image Processing,2001;10(8):1187-1193.
  • 8Park S C,Park M K,Moon G K.Super resolution image reconstruction:a technical overview.IEEE Signal Processing Magazine,2003;20(3):21-36.
  • 9Babacan S D,Molina R,Katsaggelos A K.Total variation super resolution using a variation approach.IEEE International Conference on Image Processing,2008;1(5):641-644.
  • 10Rudin L I,Osher S,Fatimi E.Nonlinear total variation based noise removal algorithms.Physcia D,1992;60(1-4):259-268.

共引文献17

同被引文献37

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部